The main source of water supply in Iraq is the surface water, especially Tigris and Euphrates Rivers and their tributaries. In the recent years there was a great drop in the water levels of Tigris River within Baghdad City which had affected the operation of twelve water supply projects located on the banks of Tigris River in Baghdad City, due to significant climate changes, and the expansion of hydraulic construction (dams) and implementation of new irrigation projects in Turkey, these factors have greatly reduced the water flowrates of river by about 46%. In the present study the flow characteristics of Tigris River within Baghdad City was studied, the reach involved was about 49km in which it represents the urban zone beginning from the north of the Baghdad City at Al-Muthana Bridge to the confluence of Tigris River with the Diyala River south of Baghdad, using steady flow one-dimensional hydraulic model to achieve raising of water levels within this reach during drought periods. This model was implemented using HEC-RAS software.Three sets of observation data were used to calibrate the model to estimate suitable Manning roughness coefficient (n) considering the root mean square error (RSME) as an accurate indicator. The results showed that n of value 0.032 for the main river bed and 0.040 for flood banks of the river gave the best results with minimum RMSE of 0.076. Several treatments were suggested such as construction of barrage, inflatable weir, and the use of obstruction for the purpose of raising water levels. Moreover, selection of the suitable site of these treatments or hydraulic structures was studied, as well as their cost was analyzed. The results show that the proper solution for maintain the required water levels that ensure continuous operation of water supply project was the construction of an inflatable weirs, due to low initial cost, simplicity of operation, their ability to inflate and deflate quickly and easily to prevent upstream flooding, and offering a high level of control and easy method for recapturing water.
The theater has a living environment that resembles or realistically simulates the real life environment on the stage where we see the place, light and living being as elements representing a picture of the life scene and for a period of time the theater merely conveyed that image, but with the development of the world industrially and technologically, the perception of this picture has evolved with the emergence of intellectual progress where each part has advantages and Philosophical goals that are consistent with the evolution of form. The theatrical lighting, colors and landscapes have become parts in the composition of a new life component in form and content and based on the above this research is titled&nbs
... Show MoreThis study was conducted to know the effect of some phenotype characteristics of corn plant on infection by (CSB), using 13 genotypes of corn plant, planting during autumn season 1997 and 1998. The result revealed that the mean of plant height (with male flowering) was (183-219) cm, the mean of leaf No./ plant in all genotypes was (16-18) leaf but the leaf area of plant was (4350-6249) cm2, there were significant differences of phenotype characteristics between genotypes ,the percentage of infection by (CSB) was (5.9-35.9),% the result showed that the phenotype characteristics had non effect on the infection percentage by (CSB) and the correlation coefficient was not significant.
In this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.
The current research reports the preparation and fabrication of the silver paste conductor which is employed as a soldering material for electro – optical components ohmic interconnections. The prepared paste possesses electrical characteristics identical to the ohmic connectors as its observable from resistance – temperature variation. Moreover, the I – V characteristics obeys Ohm’s law and this dependency was further confirmed by the nearly constant capacitance measurements with voltage and frequency. A noticeable improvement in electrical conductivity, compared to the pure silver paste sample, was noted for samples prepared by mixing predetermined weight ratios of brass and copper. Furthermore, stability of electrical resistan
... Show More