A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studio software was used to analyze 1200 different cases. For each case the
length of protection (L) and volume of structure (V) required to satisfy the safety factors mentioned previously were estimated for the input values, namely, the upstream cutoff depth (S1), the downstream cutoff depth (S2), the foundation width (B), the angle of inclination of the upstream cutoff (Ɵ1) and the angle of inclination of the downstream cutoff (Ɵ2), H (differencehead), kr (degree of anisotropy) and D (depth of impervious layer). An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the crossover probability, the mutation probability and level,
the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate
that the most factors that affects. the optimum solution is the $ number of population required. The minimum value that gives stable global optimum solution of this parameter is (30000) while other variables have little effect on the optimum solution.
One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show Moreplanning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show MoreBackground: The incisive canal is an anatomical structure with an important location in the anterior maxilla, analyzing this canal and its relation to the bone anterior to the canal is necessary during dental implant. Aim of this study is evaluated effect of gender, age and tooth loss in area of maxillary central incisors teeth on the dimensions of incisive canal and buccal bone anterior to the canal using spiral computed tomography. Materials and Methods: Sample consists of prospective study for 156 subjects for both gender, they divided into two groups, 120 dentate group (60 male and 60 female) with age ranging from (20-70) and 36 edentate group (with missing maxillary central incisors) (18 male and 18 female) with age ranging from (50-70
... Show MoreThe research aims to analyze the television advertisement to monitor the indirect and underlying meanings behind the apparent significance in Zain’s “Ya Baghdad” Advertisement through sociological analysis, in accordance with the cultural analysis of Hofstede’s ‘Model of Cultural Dimensions’. Our choice of such a model in practical application over other models that may have provided more dimensions is due to its ability and verification in explaining cultural diversity and additionally the size of data and studies on the cultural dimension. This study’s aim is to verify the validity, stability and significance of this model before being adopted by Hofstede as a measurement tool. This model was used in order to analyze the rel
... Show MoreThe current research aims to identify the level of strategic orientation and its dimensions (vision, mission, goals, and values) in the Iraqi National Security Service (INSS). The researchers followed the descriptive analytical approach as one of the forms of analysis and organized scientific interpretation to describe a specific phenomenon or problem, adopting the form questionnaire being the main source in collecting data and preparing for this. Based on the program of the Statistical Package of Social Sciences (SPSS 26) to analyze the data and come up with the final research results to identify the opinions of the intended sample on the subject of research, and the questionnaire of (20) paragraphs included the search variable, and was
... Show MoreA new results for fusion reactivity and slowing-down energy distribution functions for controlled thermonuclear fusion reactions of the hydrogen isotopes are achieved to reach promising results in calculating the factors that covered the design and construction of a given fusion system or reactor. They are strongly depending upon their operating fuels, the reaction rate, which in turn, reflects the physical behavior of all other parameters characterization of the system design
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show More