A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studio software was used to analyze 1200 different cases. For each case the
length of protection (L) and volume of structure (V) required to satisfy the safety factors mentioned previously were estimated for the input values, namely, the upstream cutoff depth (S1), the downstream cutoff depth (S2), the foundation width (B), the angle of inclination of the upstream cutoff (Ɵ1) and the angle of inclination of the downstream cutoff (Ɵ2), H (differencehead), kr (degree of anisotropy) and D (depth of impervious layer). An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the crossover probability, the mutation probability and level,
the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate
that the most factors that affects. the optimum solution is the $ number of population required. The minimum value that gives stable global optimum solution of this parameter is (30000) while other variables have little effect on the optimum solution.
Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was
... Show MoreThis work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MoreArtificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network. The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreReservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use
... Show MoreTigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and
... Show MoreThis study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThe time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert
... Show More