In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air induced through the test room by SC effect. The governing equation of Computational Fluid Dynamic (CFD) model was developed by the effective heat capacity method equation to describe the heat storage and release from PCM-CFM. Practical and computational Results referred to increase in thermal conductivity of the paraffin wax that supported by CFM than 10 times, while the ventilation effect is still active for hours after sun set amount. The maximum ventilation mass flow rate with TESB collector was 36.651 kg/hr., when the overall discharge coefficient equals 0.371. Also, the experimental results referred to the best working angle range 45~60o, while the highest approaching temperature (between air and collector) was appeared for the double passes flat plate collector. Results gave higher heat storage efficiency 47% when the maximum solar radiation 780 W/m2 at 12.00 pm, and the energy summation through duration of charging time was 18460 kJ. Double passes SC at 60o angle presented the highest efficiency with value approaching to 73%, while TESB collector efficiency depicted highest efficiency value 70% at 12:00 pm.
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreBacterial meningitis is a leading cause of illness and death worldwide. It is crucial for clinical and public health care, as well as disease control, to identify the meningitis-causing agent promptly. Between June 2021-February 2022, a total of 100 cerebrospinal fluid (CSF) and blood samples were collected from suspected cases of meningitis admitted to Raparin Paediatric Teaching Hospital, Erbil city-Iraq. Cytochemical, cultural, and biochemical tests were conducted, and confirmed by molecular techniques. Bacterial culture findings were positive in 7% of CSF samples and just one positive among blood samples. The most common pathogens found by cultural characteristics and VITEK 2 Compact System were Staphylococcus sciuri in two
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe research aimed: 1. Definition of family climate for the university students. 2. Definition of statistical significance of differences in family climate variable depending on the sex (males - females) and specialization (Scientific - humanity). 3. Definition of academic adjustment for university students. 4. Definition of correlation between climate and academic adjustment. The research sample formed of (300) male and female students by (150) male of scientific and humanitarian specialization and (150) female of scientific and humanitarian specialization randomly selected from the research community. To achieve the objectives of the research the researcher prepared a tool to measure family climate. And adopted the measure (Azzam 2010)
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreThis study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More