Preferred Language
Articles
/
joe-774
Modified W-LEACH Protocol in Wireless Sensor Network
...Show More Authors

In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.

  

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design The Modified Multi Practical Swarm Optimization To Enhance Fraud Detection
...Show More Authors

     Financial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which co

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Adsorption of Congo Red Dye from Aqueous Solution onto Natural and Modified Bauxite Clays
...Show More Authors

The adsorption behavior of congo red dye from its aqueous solutions was investigated onto natural and modified bauxite clays. Both bauxite and modified bauxite are primarily characterized by using, FTIR, SEM, AFM, and XRD. Several variables are studied as a function of adsorption including contact time, adsorbent weight, pH, ionic strength, particle size and temperature under batch adsorption technique. The absorbance of the solution before and after adsorption was measured spectrophotometrically. The equilibrium data fit with Langmuir model of adsorption and the linear regression coefficient R2 is found to be 0.9832 and 0.9630 for natural and modified bauxite respectively at 37.5°C which elucidate the best fitting isotherm model. The gene

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modified Grid Clustering Technique to Predict Heat Transfer Coefficient in a Duct of Arbitrary Cross Section Area
...Show More Authors

A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.

The method is utilized to predict

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
A Modified Approach by Using Prediction to Build a Best Threshold in ARX Model with Practical Application
...Show More Authors

The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.

In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Radioelectronics And Communications Systems
Erratum to: “BER Performance Enhancement for Secure Wireless Communication Systems Based on DCSK-MIMO Techniques under Rayleigh Fading Channel”
...Show More Authors

There has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide low bit error rates (BER) along with information security. The aim of such activity is to steal or distort the information being conveyed. Optical Wireless Systems (basically Free Space Optic Systems, FSO) are no exception to this trend. Thus, there is an urgent necessity to design techniques that can secure privileged information against unauthorized eavesdroppers while simultaneously protecting information against channel-induced perturbations and errors. Conventional cryptographic techniques are not designed

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Feb 18 2021
Journal Name
Journal Of Optical Communications
Theoretical investigation of multiple input–multiple output (MIMO) technique for line of sight (LoS) underwater wireless optical communications system
...Show More Authors
Abstract<p>In this paper, a theoretical investigation was suggested to study underwater wireless optical communication (UWOC) system based on multiple input–multiple output (MIMO) technique. The modulation schemes such as RZ-OOK, NRZ-OOK, 32-PPM and 4-QAM applied under different coastal water types. MIMO technique enabled the system to transmit data rate with longer distance link. The performance of the proposed system examined by BER and data rate as a metrics. Several impairments such as the types of water by the attenuation of coastal water and the distance link were taken into account for the transmission of the optical signal to appreciate the reliability of the MIMO technique. The theore</p> ... Show More
View Publication
Scopus (19)
Crossref (20)
Scopus Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Performance Analysis on Multiple Device Connections of Small Office Home Office Network
...Show More Authors

Malaysia has been supported by one of the high-speed fiber internet connections called TM UniFi. TM UniFi is very familiar to be used as a medium to apply Small Office Home Office (SOHO) concept due to the COVID-19 pandemic. Most of the communication vendors offer varieties of network services to fulfill customers' needs and satisfaction during the pandemic. Quality of Services is queried by most users by the fact of increased on users from time to time. Therefore, it is crucial to know the network performance contrary to the number of devices connected to the TM UniFi network. The main objective of this research is to analyze TM UniFi performance with the impact of multiple device connections or users' services. The study was conducted

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data
...Show More Authors

The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.

... Show More
View Publication Preview PDF