Mandali Dam is one of the small dams in Iraq; it is located on Haran Wadi, Gangir, just 3km north-east Mandali City. Mandali dam consists of four main parts, the dam body, the intake structure, the spillway, and the bottom outlet. The dam body is zoned earth filled with a central core. The main purposes of the dam are to maintain flow of Wadi Haran, supplying irrigation and drinking water to Mandali City, and recharging the groundwater. Over a period of seven years of operation, the dam lost its ability to store water due to accumulated sediments within its reservoir. The accumulated sediment is about 2.25million m3. The average annual rate of reduction during this period is about 0.321million m3. This is form an annual reduction in the original capacity of the dam by 14.26%. This paper attempts to study the hydraulic characteristics and the characteristics of sediment process including the velocity patterns, the distribution concentration, and bed change of sediment within the reservoir of Mandali Dam. The main conclusions of the study that, the velocity is very high in the upstream of the reservoir, due to the relatively narrow section of the wadi and high elevations of the bottom reservoir at this part and the velocities tend to decrease gradually toward the middle part of the reservoir. High concentration in the reservoir is located at the upstream of the reservoir, due to high flow velocities at the upstream and decrease gradually toward the reservoir outlet from spillway. The thickness of deposited sediment is very high in the middle part of the reservoir due to immediate drop in the velocity of water at this part lead to high deposition of sediment.
Since the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show MoreThe transportation model is a well-recognized and applied algorithm in the distribution of products of logistics operations in enterprises. Multiple forms of solution are algorithmic and technological, which are applied to determine the optimal allocation of one type of product. In this research, the general formulation of the transport model by means of linear programming, where the optimal solution is integrated for different types of related products, and through a digital, dynamic, easy illustration Develops understanding of the Computer in Excel QM program. When choosing, the implementation of the form in the organization is provided.
Varied uses of international rivers in the past few decades dramatically, resulting in this multiplicity of uses and all associated with it for the occurrence of freshwater scarcity activities, and thus an increase in conflicts and disputes around on the rights of each of the riparian countries to benefit from the waters of the river at various purposes, particularly the establishment of dams on some of them as is the case (Renaissance Ethiopian) big impact on downstream countries Dam (Egypt and Sudan), due to the Oukuahma at the end of the Nile Valley made them vulnerable to environmental fluctuations, political crises facing the Nile basin countries, and any reduction in the proportion of water is not only the Nile River, but for all r
... Show MoreAccurate computation of the roughness coefficient is important in the studies of open channel flow. To measure and identify the hydraulic characteristics of the flow system, the model simulation is necessary to study and get the results of the hydraulic properties to specify Manning coefficient of the Euphrates River. In this study, the reach is extended along the Euphrates River from Haditha Dam to Ramadi Barrage with a distance of 169km. The HEC-RAS model was implemented to simulate the flow within the study reach. The geometry of the river was represented by more than two hundred cross-sections surveyed in 2013 and 2021. The model was calibrated using some observed discharges at the Heet gage station for records of th
... Show MoreThe efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th