Tests were performed on asphalt concrete specimens with (101.6 mm in diameter and 101.6 mm in height), and the results were implemented for calculating permanent deformation and resilient modulus under repeated compressive stress with different levels of stresses (0.068, 0.138 and 0.206) MPa at 40 ºC. Two types of additives namely (carbon black-asphalt) and (SBR-asphalt) were tried as rejuvenators with three percentages of (0.5, 1 and 1.5) % by weight of asphalt cement along with two ratios of AC (1 and 2) % have been implemented as rejuvenator and blended with the reclaimed asphalt concrete. Aged materials were obtained from the site. 100% Reclaimed Asphalt Pavement material from the reclaimed mixture is implemented. A set of (3) specimens were prepared for every mixture; three specimens were tested under (repeated compressive stress) at each level of stress. The objective of this work was to study the effect of two types of additives (Styrene-Butadiene-Rubber (SBR) and carbon black) on the performance of recycled asphalt concrete mixture. It was concluded that the Resilient modulus (Mr) at (0.138 and 0.206) MPa stress level decreases by (14, 22 and 8) % and (22, 34 and 11) for reclaimed and recycle mixtures with (carbon black-asphalt and SBR-asphalt) respectively when compared with that at 0.068 MPa. Permanent deformation for recycled mixtures with (carbon black-asphalt and SBR-asphalt) increased by (65.9, 4.54) %, (146.6, 27.2) % and (79, 5.5) % at level of stresses (0.068, 0.138 and 0.206) MPa respectively when compared to reclaimed mixture.
Moisture damage is described as a reduction in stiffness and strength durability in asphalt mixtures due to moisture. This study investigated the influence of adding nano silica (NS) to the Asphalt on the moisture susceptibility of hot-mix-asphalt (HMA) mixtures under different aging conditions. NS was mixed with asphalt binder at concentrations of 2%, 4%, and 6% by weight of the binder. To detect the microstructure changes of modified Asphalt and estimate the dispersion of NS within the Asphalt, the field emission scanning electron microscope (FE-SEM) was used. To examine the performance of Asphalt mixed with NS at different aging stages (short-term and long-term aging), asphalt mixture tests such as Marshall stability,
... Show MoreHigh-volume traffic with ultra-heavy axle loads combined with extremely hot weather conditions increases the propagation of rutting in flexible pavement road networks. Several studies suggested using nanomaterials in asphalt modification to delay the deterioration of asphalt pavement. The current work aims to improve the resistance of hot mix asphalt (HMA) to rutting by incorporating Nano Silica (NS) in specific concentrations. NS was blended into asphalt mixtures in concentrations of 2, 4, and 6% by weight of the binder. The behavior of asphalt mixtures subjected to aging was investigated at different stages (short-term and long-term aging). The performance characteristics of the asphalt mixtures were evaluated using the Marshall s
... Show MoreThin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
Industrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show MoreThis study on the plant of Ain –AL Bason Catharanthus roseous showed the ability of callus cells that is produced by In Vitro culture technique and transformed to the accumulated media (MS 40gm/L sucrose ,2gm/L IAA Indole acetic acid , 0.5gm/L Tryptophan) to produce Vinblastine and Vincristine compounds. Extraction, purification and quantitive determination of Vinblastine and Vincristine compounds using High performance liquid chromatography technique (HPLC)were carried out. The results showed that the highest concentration of Vinblastine and Vincristine compounds were ( 4.653,12.5 (ppm /0.5 dry Wight respectively from transformed callus cells from MS 40 gm /L sucrose , 2 gm / L NAA Naphthaline acetic acid .
Free Piston Engine Linear Generator (FPELG) is a modern engine and promising power generation engine. It has many advantages compared to conventional engines such as less friction, few numbers of parts, and high thermal efficiency. The cycle-to-cycle variation one of the big challenges of the FPELG because it is influence on the stability and output power of the engine. Therefore, in this study, the effect of ignition time on combustion characteristics is investigated. The single-cylinder FPELG with spark ignition (SI) combustion type by using compressed natural gas (CNG) fuel type was set to run. LabVIEW is used to run the engine and control of input parameters. All experimental data
Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreThis paper reports test results and describes a numerical investigation of the effectiveness of using carbon fibre reinforced polymer (CFRP) fabrics for strengthening concrete cylinders that have been undamaged and damaged due to heating under preload. The purpose of this research was to investigate whether there is any difference in the performance of CFRP-wrapped cylinders if the wrapping is done under preload, and those for which neither heating, cooling nor wrapping was done under preload. The cylinders were exposed to 30% of maximum load at ambient temperature during heating and cooling before being wrapped under preload. Of 18 Ø 100 × 200 mm identical cylinders, 6 were left as control samples without heating, 12 were exposed t
... Show MoreThe research deals with a new type of high-performance concrete with improved physical properties, which was prepared by using metal additives minutes (Metakaolin) and by studing their impact on the properties of mortar and concrete high-performance through destructive and non destructive tests. This type of concrete is used broadly in public buildings and in other structures . The research involved a number of experiments such as finding the activity index of burned at a temperature of 750 º C according to the standard ( ASTM C-311/03), as well as casting models for the cubic mortar mixtures and concrete containers at different rates of metakaolin ranging between (5% - 20%) as an added part to the cement mix to get a high- compressive
... Show More