In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking desired voltage and less energy consumption through investigating and comparing under random current variations with the minimum number of fitness evaluation less than 20 iterations.
The present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show More
هدٌفت الد ا رسة إل هعرفة تأثير الهستخمص الزيتي لىبات الدارسين
Cinnamomum zeylanicum عم بعض الجكاىب الفسمجية كالىس جية في الفئ ا رف الهخهجة بالأكياس العذرية أك الطكر اليرقي لمهشككة
الحبيبية Echinococcus granulosus .كتقيي كفاءة الهستخمص الزيتي لىبات الدارسيف ضد الإصابة
التجريبية بالأكياس الهائية العذرية. استخد 40 فأ ا ر قسهت إل أربع هجاهيع هتساكية .حقىت الفئ ا رف في
الهجكعة الأكل كالثاىية كالثالثة ب 2000 رؤيس أكلي / فأر ،
Abstract
The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP) and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8) experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resul
... Show MoreThe objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape dis
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MorePseudomonas putidaPST-1 isolate isolated from soil of plant root was used for high production of indole acetic acid. Indole acetic acid (IAA) production is a major property of rhizosphere bacteria that stimulate and facilitate plant growth. Optimization of indole acetic acid production was carried out at different cultural conditions of pH temperature, incubation period, and the amount of inoculum of bacteria. The best chemical medium for high IAA production (82 Mg/ml) was Luria-Bertani broth medium consisted of 1.2gm tryptophan and 10gm peptone in their components, while the cheese whey medium was the best natural medium for IAA production was (66 Mg/ml). IAA production byPseudomonas putida PST-1 was optimized by studying some factors t
... Show MoreThe aim of robot path planning is to search for a safe path for the mobile robot. Even though there exist various path planning algorithms for mobile robots, yet only a few are optimized. The optimized algorithms include the Particle Swarm Optimization (PSO) that finds the optimal path with respect to avoiding the obstacles while ensuring safety. In PSO, the sub-optimal solution takes place frequently while finding a solution to the optimal path problem. This paper proposes an enhanced PSO algorithm that contains an improved particle velocity. Experimental results show that the proposed Enhanced PSO performs better than the standard PSO in terms of solution’s quality. Hence, a mobile robot implementing the proposed algorithm opera
... Show MoreThe object of the presented study was to monitor the changes that had happened
in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To
fulfill this goal, different satellite images had been used in different times, MSS
1973, TM 1990, ETM+ 2000 and MODIS 2010. K-Means which is unsupervised
classification and Neural Net which is supervised classification was used to classify
the satellite images 0Tand finally by use 0Tadaptive classification 0Twhich is0T3T 0T3Tapply
s0Tupervised classification on the unsupervised classification. ENVI soft where used
in this study.
Image classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show MoreIn the current research work, a method to reduce the color levels of the pixels within digital images was proposed. The recent strategy was based on self organization map neural network method (SOM). The efficiency of recent method was compared with the well known logarithmic methods like Floyd-Steinberg (Halftone) dithering and Octtrees (Quadtrees) methods. Experimental results have shown that by adjusting the sampling factor can produce higher-quality images with no much longer run times, or some better quality with shorter running times than existing methods. This observation refutes the repeated neural networks is necessarily slow but have best results. The generated quantization map can be exploited for color image compression, clas
... Show More