The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant. The impact of voltage values was chosen as 6, 10, and 14 Volts. On increasing voltage dyes, removals increased significantly. The higher removal efficiency of dyes (99.9%) was achieved at (30) minutes for (Al/Al) electrodes at pH 6.5-7 and voltage 14 Volts. The results showed that the best amount of sodium chloride was found to be 600 ppm in dyes, voltage of 14 Volts, and best gap between the electrodes as 0.5 cm.
The ability of Cr (VI) removal from aqueous solution using date palm fibers (leef) was investigated .The effects of pH, contact time, sorbets concentration and initial metal ions concentration on the biosorption were investigated.
The residual concentration of Cr (VI) in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef) has a potential effect for the uptake of Cr (VI) from industrial waste water.
The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show MoreViscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
The adsorption behavior of congo red dye from its aqueous solutions was investigated onto natural and modified bauxite clays. Both bauxite and modified bauxite are primarily characterized by using, FTIR, SEM, AFM, and XRD. Several variables are studied as a function of adsorption including contact time, adsorbent weight, pH, ionic strength, particle size and temperature under batch adsorption technique. The absorbance of the solution before and after adsorption was measured spectrophotometrically. The equilibrium data fit with Langmuir model of adsorption and the linear regression coefficient R2 is found to be 0.9832 and 0.9630 for natural and modified bauxite respectively at 37.5°C which elucidate the best fitting isotherm model. The gene
... Show MoreSeveral industrial wastewater streams may contain heavy metal ions, which must be effectively removal
before the discharge or reuse of treated waters could take place. In this paper, the removal of copper( II)
by foam flotation from dilute aqueous solutions was investigated at laboratory scale. The effects of
various parameters such as pH, collector and frother concentrations, initial copper concentration, air flow
rate, hole diameter of the gas distributor, and NaCl addition were tested in a bubble column of 6 cm inside
diameter and 120 cm height. Sodium dodecylsulfate (SDS) and Hexadecyl trimethyl ammonium bromide
(HTAB) were used as anionic and cationic surfactant, respectively. Ethanol was used as frothers and the
This work studies the performance of zeolite permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. A 1D numerical finite difference model has been developed to describe pollutant transport within groundwater taking pollutant sorption on the permeable reactive barrier (PRB), which is performed by Langmuir equation, into account. Numerical results show that the PRB starts to saturate after a period of time (~120 h) due to reduction of the retardation factor, indicating a decrease in the percentage of zeolite functionality. However, a reasonable agreement between model predict
... Show More