Electrospinning is a novel technique that can be used to produce highly porous fibers with highly tunable properties. In this research, this technique is adopted to prepare the electrospun nanofiber membrane for membrane distillation application. A custom-built electrospinning setup was made to prepare the nanofibers membrane. Polyvinylidene fluoride (PVDF) polymer was used in the electrospinning process due to its high hydrophobicity. Electrospun (PVDF) nanofibers were tested in direct contact membrane distillation (DCMD) process using 0.6 M sodium chloride as a feed solution. The resulting nanofiber membrane exhibited high performance in DCMD (i.e. relatively high water flux and high salt rejection). It has been found that the prepared membrane has a uniform and fibrous structure as indicated by the scanning electron microscopy (SEM). Relatively thin fibers with a diameter of 250 nm were produced during the Electrospinning process.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreEye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreThe penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show More
Research topic: (The Epistemological Foundations for Comparison of Religions by al-Amiri)
The research sought to study the topic with: a descriptive methodology by investigating the components of al-Amiri's approach to the interfaith comparison. And analytical, by showing the applied perception of an objective model in the comparison of religions to answer two questions: What are the cognitive foundations of al-Amiri? And what is his approach to establishing an objective comparison between religions?
The research started by introducing Abu al-Hassan al-Amiri, and then presented four topics: An introduction to al-Amiri's efforts in the interfaith comparison, his knowledge foundations, an applied model
... Show MoreOne hundred and eighty five urine samples were collected eight isolates (4.3%) were obtained and diagnosed as Staphylococcus aureus. Among 8 isolates, 5 (62.5%) S. aureus isolates were found to be enterotoxigenic, most of isolates produced at least two types of Staphylococcal enterotoxins (SEs). The production of enterotoxins in the presence or absence of Thymol extracts (aqueous and alcoholic) were estimated using a reversed passive latex agglutination (SET-RPLA) kit. The extracts reduced enterotoxin production compared with the control. Enterotoxin inhibition was observed for enterotoxin C production at minimal inhibitory concentrations (MIC) at 400 µg/ml, whereas production of enterotoxins A, B, and
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show More