The growing population and the rising standard of living in cities as well as the increased commercial, industrial and agricultural activities around the world led to
massive production of waste containing different materials and one of them is the municipal solid waste (MSW), so there is a major problem facing the cities around the world about the waste, how to collect, transfer it and how to discard it. Because the accumulation of wastes, whether in the city alleys or in its squares and especially in its residential areas affect the health of their populations besides this situation will be a major indication of the deteriorating quality of life in the city, as hygiene considered a fundamental criterion for the city beauty as well as an indication of the protection provided by the city to their environment and the level of protection provided to the health of city residence. The accumulated waste which is left in the city without treatment significantly affects the psychological behavior of the residence of these areas towards their community and environment and therefore their behavior towards their regions and their cities. From here emerged the general research problem concerning the modern civilization and its lifestyle that produced great amounts of (municipal solid waste), which became a big problem facing the modern cities concerning their collection, transportation and finally their disposal, how can these great amounts of waste be used whether by recycling, energy recovery or transferring to plant fertilizers ... etc. To serve the sustainable growth of these modern cities, this
lead to the specific research problem concerning the lack of clarity concerning the impact of waste collection, transporting and treating and city urban environment and its townscape. Research Hypothesis: The process of collecting, transporting and . treating city solid waste or using it has a great impact on city urban environment and its townscape.
In the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreThe current study was designed to evaluate the anti-inflammatory effect of GKB in the rat model of granulomatous inflammation. Thirty rats were distributed into five groups: The first group served as negative control group that received distilled water (DW) only without inducting inflammation, positive control group; treated with DW with the induction of inflammation and they were assigned to cotton pellet-induced granuloma, ginkgo biloba (GKB) treated group (200mg/kg/day), dexamethasone-treated group (1mg/kg), and Prednisolone treated group (5mg/kg). All the treatments were given orally for seven consecutive days. On day eight, the rats were anesthetized and the pellets together with granulation tissue were carefully removed
... Show MoreLasmiditan (LAS) is a recently developed antimigraine drug and was approved in October, 2019 for the treatment of acute migraines; however, it suffers from low oral bioavailability, which is around 40%.
This study aimed to improve the LAS bioavailability via formulation as nanoemulsionbased in situ gel (NEIG) given intranasally and then compare the traditional aqueous-LASsuspension (AQS) with the two successful intranasal prepared formulations (NEIG 2 and NEIG 5) in order to determine its relative bioavailability (F-relative) via using rabbits.
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
The neutrophil/ lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) have the potential to be inflammatory markers that reflect the activity of many inflammatory diseases. The aim of this study was to evaluate the NLR and PLR as potential markers of disease activity in patients with ankylosing spondylitis.
The study involved 132 patients with ankylosing spondylitis and 81 healthy controls matched in terms of age and gender. Their sociodemographic data, disease activity scores using the Bath Ankylosing
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show More