Nowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental results showed that the concrete strength is dependent on the amount of recycled aggregates. When the recycled aggregates were less than 30% of the total aggregates, they had a negligible effect on concrete strength and the load carrying capacity of the column models were improved. Also, the presence of steel fibers enhanced the load carrying capacity of the columns constructed from concrete with recycled aggregates of more than 30%. Finite element analysis (using ANSYS 16.1 software program) was conducted to simulate the experimental investigations, and they achieved good agreements with the test results.
Urban agriculture is one of the important urban uses of land in cities since the inception of cities and civilizations, but the great expansion of cities in the world during the twentieth century and the beginning of the twentieth century and the increase in the number of urban residents compared to the rural population has led to a decline in this use in favor of other uses.
This decline in agricultural and green land areas in cities has negatively affected the environment, natural life and biological diversity in cities in addition to the great impact on the climate and the increase in temperatures and the negative impact on the economic side, since urban agriculture is an important pillar of the economy, especially
... Show MoreRadiation measuring devices need to periodic calibration process to examine their sensitivity and the extent of the response. This study is used to evaluate the radiation doses of the workers in the laboratories of the Directorate of Safety as a result of the use of point sources in calibrating of the devices in two ways, the first is the direct measurement by the FAG device and the others using RESRAD and RAD PRO programs. The total doses values using FAG were (2.57 μSv/y, 102.3 μSv/y and 20.75 μSv/y for TLD laboratory, Gamma spectroscopy analyses (GSA) laboratory and equipment store respectively, and the total doses that calculated using RESRAD and RAD PRO were 1.518 μSv/y, 76.65 μSv/y and 21.2 μSv/y for the above laboratories. t
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show More