Nowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental results showed that the concrete strength is dependent on the amount of recycled aggregates. When the recycled aggregates were less than 30% of the total aggregates, they had a negligible effect on concrete strength and the load carrying capacity of the column models were improved. Also, the presence of steel fibers enhanced the load carrying capacity of the columns constructed from concrete with recycled aggregates of more than 30%. Finite element analysis (using ANSYS 16.1 software program) was conducted to simulate the experimental investigations, and they achieved good agreements with the test results.
The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra
... Show MoreIn this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreIn the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.
Sustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreThe risk of significant concern is resistance to antibiotics for public health. The alternative treatment of metallic nanoparticles (NPs), such as heavy metals, effects on antibiotic resistance bacteria with different types of antibiotics of - impossible to treat using noval eco-friendly synthesis technique nanoparticles copper oxide (CuO NPs) preparation from S. epidermidis showed remarkable antimicrobial activity against S.aureus Minimum inhibitory concentra range (16,32,64,256,512) µg/ml via well diffusion method in vitro, discover those concentrations effected in those bacteria and the best concentration is 64 µg/ml, characterization CuO NPs to prove this included atomic force microscope, UV, X-ray Diffraction and TEM, and ant
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More