Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth, to the smartphone which in turn sends it to the server. At the server side, the speech features are extracted from the speech signal to be classified by neural network. To minimize the misclassification of the neural network, the user heart rate measurement is used to direct the extracted speech features to either excited (angry and happy) neural network or to the calm (sad and normal) neural network. In spite of the challenges associated with the system, the system achieved 96.49% for known speakers and 79.05% for unknown speakers
High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the
... Show MoreRecently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreProducing pseudo-random numbers (PRN) with high performance is one of the important issues that attract many researchers today. This paper suggests pseudo-random number generator models that integrate Hopfield Neural Network (HNN) with fuzzy logic system to improve the randomness of the Hopfield Pseudo-random generator. The fuzzy logic system has been introduced to control the update of HNN parameters. The proposed model is compared with three state-ofthe-art baselines the results analysis using National Institute of Standards and Technology (NIST) statistical test and ENT test shows that the projected model is statistically significant in comparison to the baselines and this demonstrates the competency of neuro-fuzzy based model to produce
... Show MoreIris recognition occupies an important rank among the biometric types of approaches as a result of its accuracy and efficiency. The aim of this paper is to suggest a developed system for iris identification based on the fusion of scale invariant feature transforms (SIFT) along with local binary patterns of features extraction. Several steps have been applied. Firstly, any image type was converted to grayscale. Secondly, localization of the iris was achieved using circular Hough transform. Thirdly, the normalization to convert the polar value to Cartesian using Daugman’s rubber sheet models, followed by histogram equalization to enhance the iris region. Finally, the features were extracted by utilizing the scale invariant feature
... Show MoreThis work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of
... Show MoreIn recent years, the iris biometric occupies a wide interesting when talking about
biometric based systems, because it is one of the most accurate biometrics to prove
users identities, thus it is providing high security for concerned systems. This
research article is showing up an efficient method to detect the outer boundary of
the iris, using a new form of leading edge detection technique. This technique is
very useful to isolate two regions that have convergent intensity levels in gray scale
images, which represents the main issue of iris isolation, because it is difficult to
find the border that can separate between the lighter gray background (sclera) and
light gray foreground (iris texture). The proposed met
In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.
Data hiding (Steganography) is a method used for data security purpose and to protect the data during its transmission. Steganography is used to hide the communication between two parties by embedding a secret message inside another cover (audio, text, image or video). In this paper a new text Steganography method is proposed that based on a parser and the ASCII of non-printed characters to hide the secret information in the English cover text after coding the secret message and compression it using modified Run Length Encoding method (RLE). The proposed method achieved a high capacity ratio for Steganography (five times more than the cover text length) when compared with other methods, and provides a 1.0 transparency by depending on som
... Show MoreBecause of vulnerable threats and attacks against database during transmission from sender to receiver, which is one of the most global security concerns of network users, a lightweight cryptosystem using Rivest Cipher 4 (RC4) algorithm is proposed. This cryptosystem maintains data privacy by performing encryption of data in cipher form and transfers it over the network and again performing decryption to original data. Hens, ciphers represent encapsulating system for database tables