Far infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness indicates a smooth surface of the synthesized films. The Raman spectrum at room temperature for MWCNTs, are dominated by the two typical lines at about 1335.4 cm-1 (D line) and 1563.2 cm-1 (G line) assigned to the disorder induced by defects and curvature in the nanotubes lattice, and to the in-plane vibration of the C–C bonds, respectively. The results reflect a good IR radiation sensitivity and photoconductive gain, while the specific detectivity was in order of 107 cm.Hz1/2/W.
Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector
... Show MoreIn this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy. X-ray diffra
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was studied
... Show MoreBackground: The objectives of this study are to evaluate the effect of addition of Multi-Wall Carbon Nano Tubes (MWCNTs) of different concentrations (0.05 mg.mL-1,0.25 mg.mL-1,0.5 mg.mL-1and1 mg.mL-1) on dimethyl sulphoxide DMSO and distilled water (DW) on tooth enamel. It intends to evaluate enamel microhardness in (Kg. m-2) pre and post the application of Multi-Wall Carbon Nano Tubes (MWCNTs). Materials and Methods: Thirty specimens prepared for the present study to measure the hardness of the enamel. Results: The results showed that a significant increase in the enamel microhardness for groups 0.05 mg/mL (group B), 0.25 mg/mL (group C), 0.5 mg/mL (group D) and 1 mg/mL (group E) compared with control group (group A) in dimethyl sulphoxi
... Show MoreGraphene (Gr) decorated with silver nanoparticles (Ag NPs) were used to fabricate a wideband range photodetector. Silicon (Si) and porous silicon (PS) were used as a substrate to deposit Gr /Ag NPs by drop-casting technique. Silver nanoparticles (Ag NPs) were prepared using the chemical method. As well as the dispersion of silver NPs is achieved by a simple chemistry process on the surface of Gr.
The optical, structure and electrical characteristics of AgNPs and Gr decorated with Ag NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), x-ray diffraction (XRD). The X-ray diffraction (XRD) spectrum of Ag NPs exhibited 2θ values (38.1o, 44.3 o, 64.5 o and 77.7
... Show MoreCarbon nanotubes are an ideal material for infrared applications due to their
excellent electronic and photo electronic properties, suitable band gap, mechanical
and chemical stabilities. Functionalised multi-wall carbon nanotubes (f-MWCNTs)
were incorporated into polythiophen (PTh) matrix by electro polymerization
method. f-MWCNTs/ PTh nanocomposit films were prepared with 5wt% and
10wt% loading ratios of f-MWCNTs in the polymer matrix. The films are deposited
on porous silicon nanosurfaces to fabricate photoconductive detectors work in the
near IR region. The detectors were illuminated by semiconductor laser diode with
peak wavelength of 808 nm radiation power of 300 mW. FTIR spectra assignments
verify that t
Nonlinear diffraction pattern can be induced by focusing CW
laser into a thin quartzes cuvette containing nanofluid. The number
of revealed pattern rings indicates to the nonlinear behavior of fluid.
Here, the nonlinear refractive index of each of functionalized single
wall carbon nanotube (F-SWCNTs) suspention and multi wall carbon
nanotube (F-MWCNTs) suspention have been investigated
experimentally .Each of CNTs suspention was at volume fraction of
13×10−5 and 6×10−5. Moreover the laser source at wavelength of
473 nm was used. The results show that SWCNTs suspention
possesses higher nonlinearty than other at the same volume fraction
Multi-walled carbon nanotubes from cheap tubs company MWCNT-CP were purified by alcohol \ H2O2 \ separation funnel which is simple, easy and scalable techniques. The steps of purification were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy SEM with energy dispersive of X-ray spectroscopy EDX and surface area measurements. The technique was succeeded to remove most the trace element from MWCNT-CP which causing increase the surface area. The ratios of impurities were reduced to less 0.6% after treatment by three steps with losing less than 5% from MWCNT-CP.