Preferred Language
Articles
/
joe-638
Monitoring Land Cover Change Using Remote Sensing and GIS Techniques: a Case Study of Al-Dalmaj Marsh, Iraq
...Show More Authors

Al-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized  Difference Vegetation Index (NDVI), Geographic Information Systems(GIS),  and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, through analyses Landsat images for different three years (1990, 2003, 2016). The results indicated that there was an annual increase in vegetation was from 1990 with 980.68 km2, and 1420.35km2 in 2003 to 2072.98km2 in 2016. Whereas, the annual water coverage was about 185.95km2 in 1990 then dropped to 68.27km2 in 2003, and rose to 180.23 km2 in 2016. The water coverage increasing was on the account of barren lands areas, which were significantly decreased. These collected data can be used to deliver accurate information of the values of vegetation,water, wetlands and drylands sustainability of resources which can be used to make plans to increase tourism and protected areas by using barren lands which cannot be reclaimed for agriculture, and cultivate a new renewable energy can be set up  as solar power stations.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Using Fuzzy Clustering to Detect the Tumor Area in Stomach Medical Images
...Show More Authors

Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Solar cells based on natural dyes prepared using anatase phase titanium dioxide
...Show More Authors

Natural dye sensitized solar cell was prepared using strawberry and pomegranate dyes with anatase nanocrystalline titanium dioxide powder. A study of the optical properties of the two dyes, involving the absorption spectrum was determined in the visible region. I-V characteristics under illumination were performed. The results showed that the two prepared dye sensitized solar cells have acceptable values efficiency about (0.94 with Fill factor (45)) and (0.74 with Fill factor (44)) for strawberry and pomegranate dyes, respectively.

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
Automatic Iraqi license plate recognition system using back propagation neural network (BPNN)
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Crossref
Publication Date
Wed Jan 15 2003
Journal Name
كلية الترا ث الجامعة
Estimating an Exponentiated Expanded Power Function Distribution Using an Artificial Intelligence Algorithm
...Show More Authors

The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.

Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Solving Time-Cost Tradeoff Problem with Resource Constraint Using Fuzzy Mathematical Model
...Show More Authors

Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Positron Interactions with Some Human Body Organs Using Monte Carlo Probability Method
...Show More Authors

In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
International Journal Of Nanoscience
Gold Nanoparticles Synthesis Using Environmentally Friendly Approach for Inhibition Human Breast Cancer
...Show More Authors

In this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Using Graph Mining Method in Analyzing Turkish Loanwords Derived from Arabic Language
...Show More Authors

Loanwords are the words transferred from one language to another, which become essential part of the borrowing language. The loanwords have come from the source language to the recipient language because of many reasons. Detecting these loanwords is complicated task due to that there are no standard specifications for transferring words between languages and hence low accuracy. This work tries to enhance this accuracy of detecting loanwords between Turkish and Arabic language as a case study. In this paper, the proposed system contributes to find all possible loanwords using any set of characters either alphabetically or randomly arranged. Then, it processes the distortion in the pronunciation, and solves the problem of the missing lette

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
2022 International Conference On Data Science And Intelligent Computing (icdsic)
An improved Bi-LSTM performance using Dt-WE for implicit aspect extraction
...Show More Authors

In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref