Preferred Language
Articles
/
joe-616
Improving Water Use Efficiency and Water Productivity for Okra Crop by using Subsurface Water Retention Technology

Utilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface trickle irrigation system: Polyethylene sheet (SWRT) was used in plot T1, controlled irrigation in plot T2 and uncontrolled irrigation in plot T3. Irrigation quantities, time of irrigation, soil water contents were measured for all treatments plots. The results indicated that water use efficiency for the three experimental plots, T1, T2, and T3 were: 2.43, 1.94 and 0.98 kg/m3, respectively.  The increasing value in water use efficiency of T1 plot compared with T2 and T3 plots were 25 and 148 %, respectively. Additionally, the water productivity of okra crop for T1, T2, and T3 plots was: 12800.9, 8744.8, and 4736.3 ID/m3, respectively. The increasing value of the water productivity of T1 compared with plots T2 and T3 was 46 and 170 %, respectively. From this study, the benefit of using membrane sheet below the soil surface resulted in an increase in the value of yield, water use efficiency and water productivity. Moreover, saving water and reduced the water losses by deep percolation were resulted.   

  

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Engineering
Performance Evaluation the Turbidity Removal Efficiency of AL-Muthana Water Treatment Plant

Turbidity is a visual property of water that expresses the amount of suspended substances in the water. Its presence in quantities more significant than the permissible limit makes the water undrinkable and reduces the effectiveness of disinfectants in treating pathogens. On this basis, turbidity is used as a basic indicator for measuring water quality. This study aims to evaluate the removal efficiency of AL- Muthanna WTP. Water turbidity was used as a basic parameter in the evaluation, using performance improvement evaluation and data from previous years (2016 to 2020). The average raw water turbidity was 26.7 NTU, with a minimum of 14 NTU, with a maximum of 48 NTU. Water turbidity value for 95% of settling daily reading data was

... Show More
Crossref (5)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Engineering
Performance Evaluation the Turbidity Removal Efficiency of AL-Muthana Water Treatment Plant

Turbidity is a visual property of water that expresses the amount of suspended substances in the water. Its presence in quantities more significant than the permissible limit makes the water undrinkable and reduces the effectiveness of disinfectants in treating pathogens. On this basis, turbidity is used as a basic indicator for measuring water quality. This study aims to evaluate the removal efficiency of AL- Muthanna WTP. Water turbidity was used as a basic parameter in the evaluation, using performance improvement evaluation and data from previous years (2016 to 2020). The average raw water turbidity was 26.7 NTU, with a minimum of 14 NTU, with a maximum of 48 NTU. Water turbidity value for 95% of settling daily readi

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Application of the Canadian Water Quality Index (CCME-WQI) for Aquatic Life to Assess the Effect of Tharthar Water upon the Quality of the Tigris Water, Northern Baghdad City,Iraq

The present study aims to assess the effect of the Tharthar Canal as an outlet canal that feeds back from the Tharthar Lake on the quality of the Tigris water. Utilizing a Canadian Water Quality Index (CCME-WQI) for the protection of aquatic life Water samples were obtained every month from January to December of 2020. Six different sites were selected: four along the Tigris River and two on the Tharthar Canal. Seven ecological parameters were used to assess water quality depending on importance and availability: water temperature, Water Temperature, Turbidity, Dissolved Oxygen (DO), Total Dissolved Solids (TDS), pH, Nitrate (NO3-) and Phosphate ( . The study demonstrated that the water quality of the Tharthr canal ranked as a

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Furfural Degradation in Waste Water by Advanced Oxidation Process Using UV/H2O2

Furfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentratio

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Predicting Water Depth of Lake Using Remote Sensing image

One of the most important of satellite image is studying the surface water
according of its distribution and depth. In this work, three images have been taken
for Baghdad and surrounding for year (1991, 1999 and 2014) and by using of envi
program has been used. Different classes have been evaluated for Al-Habania and
Al-Razaza River according to its depth and water reflectance. In the present work
four types of water depth (very shallow, shallow, moderate, and deep area) have
been detected.

View Publication Preview PDF
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Construction and Operation of Solar Energy Dish for Water Heating

Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 31 2022
Journal Name
Iraqi Journal Of Science
Evaluation of Water Quality for Greater Zab River by Principal Component Analysis/ Factor Analysis

This study was conducted to determining the variable effects on water quality of Greater Zab River in Erbil province, Iraq, using multivariate statistical analysis. Seventeen variables were monitored in four sampling sites during one year (from May 2012 to April 2013). The dataset were treated using principal component analysis (PCA)/ factor analysis (FA), cluster analysis (CA) to the most important factors affecting water quality, sources of pollution and suitability of water for drinking consumption and irrigation. Six factors were identified as responsible for the data structure explaining 73.5% of the total variance in the dataset and are conditionally named, hydrochemical from weathering, mineral salts and domestic wastes. CA showed

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Green Engineering
Scopus (5)
Scopus
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Biosorption of Lead and Chromium Ions by Using Penicillium digitatum (Pers.) Sacc. from Industrial Water

Some microorganisms, including fungi, are characterized by their removal efficiency and reducing the concentrations of heavy metals such as Pb and Cr from industrial water. The present study aims to estimate the efficiency of Penicillium digitatum (Pers.) Sacc. as a low-cost biosorbent in reducing Pb and Cr from industrial water with optimum biosorption conditions (acidity of 1.5 , 4, and 5; temperature of 30 °C). The Fourier transform infrared spectroscopy (FTIR) analysis was also used for determining the roles of the functional groups in this biosorbent. The results indicated that the highest P. digitatum efficiency values for reducing the levels of Pb and Cr were 84% and 70% , respectively, at pH of 5 after 24 h.

... Show More
Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Biosorption of Lead, Cadmium and Nickle from Industrial Wast water by Using Dried Macroalgae

Biosorpion of lead (Pb), Cadmium (Cd) and Nickl(Ni) by dried biomass of Chara sp. for sample of BMP was used as alternative approach of conventional method. The range of removal percentages was between 92-97%, 70-98.7% and 46.6-96.6% for Pb, Cd and Ni respectively at 3h.Treatment time, with 300-500 mg dried weight from Chara sp. powder at pH 4, with 60 rpm at shaker. FTIR analysis showed the active groups which are responsible for sequestration of heavy metals represented by carboxyl, hydroxyl alkyl, amine and amide. The Biosorption equilibrium experiment for elements showed that the highest sorption percentage for three elements was, Pb 96.6% after 30 minute, for Cd was 100% after 15 minute and 40% to Ni after 75 minute, while the biosorp

... Show More
Crossref
View Publication Preview PDF