Preferred Language
Articles
/
joe-584
Design of an Optimal Integral Backstepping Controller for a Quadcopter
...Show More Authors

In this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking error to zero. To improve controller capability in the steady state against disturbances, an integral action is used with the BC. To determine the optimal values of the IBC parameters, the Particle Swarm Optimization (PSO) is used. In the algorithm, the controller parameters are computed by minimizing a cost function that depends on the Integral Time Absolute Error (ITAE) performance index.

Finally, different numerical simulations are provided in order to illustrate the performances of the designed controller. And for comparison purposes, a PID controller is designed and optimized using the PSO to control the quadcopter. The obtainediresults indicated a superiority in performance for the IBC over the PID controller based on some points among which are: a 13.3% and 30.5% lesser settling times for X and Y consequently, the ability to perform critical maneuvers that the quadcopter failed to do using the PID controller, and the capability of fast following up and conforming the changes of pitch (

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
OPTIMAL DESIGN OF MODERATE THICK LAMINATED COMPOSITE PLATES UNDER STATIC CONSTRAINTS USING REAL CODING GENETIC ALGORITHM
...Show More Authors

The objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Design Criteria of an Activated Carbon Bed for Dechlorination of Water
...Show More Authors

Granular carbon can be used after conventional filtration of suspended matter or, as a combination of filtration - adsorption medium. The choice of equipment depends on the severity of the organic removal problem, the availability of existing equipment, and the desired improvement of adsorption condition.
Design calculations on dechlorination by granular - carbon filters considering the effects of flow rate, pH , contact time, head loss and bed expansion in backwashing , particle size, and physical characteristics were considered assuming the absence of bacteria or any organic interface .

View Publication Preview PDF
Publication Date
Mon Dec 03 2018
Journal Name
Journal Of Engineering
Variable Structure Control Design for a Magnetic Levitation System
...Show More Authors

In this paper the variable structure control theory is utilized to derive a discontinuous controller to the magnetic levitation system. The magnetic levitation system model is considered uncertain, which subjected to the uncertainty in system parameters, also it is open-loop unstable and strongly nonlinear. The proposed variable structure control to magnetic levitation system is proved, and the area of attraction is determined. Additionally, the chattering, which induced due to the discontinuity in control law, is attenuated by using a non-smooth approximate. With this approximation the resulted controller is a continuous variable structure controller with a determined steady state error according to the selected control

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 19 2017
Journal Name
Arabian Journal For Science And Engineering
A New Method to Tune a Fractional-Order PID Controller for a Twin Rotor Aerodynamic System
...Show More Authors

View Publication
Scopus (33)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Siam Journal On Control And Optimization
A Duality Approach for Solving Control-Constrained Linear-Quadratic Optimal Control Problems
...Show More Authors

View Publication
Scopus (24)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Transactions On Power Delivery
Optimal Dielectric Design of Medium Voltage Toroidal Transformer with Electrostatic Shield under Fast Front Excitation
...Show More Authors

Accurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters

... Show More
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The Modified Quadrature Method for solving Volterra Linear Integral Equations
...Show More Authors

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations
...Show More Authors

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

View Publication Preview PDF
Crossref