Preferred Language
Articles
/
joe-584
Design of an Optimal Integral Backstepping Controller for a Quadcopter
...Show More Authors

In this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking error to zero. To improve controller capability in the steady state against disturbances, an integral action is used with the BC. To determine the optimal values of the IBC parameters, the Particle Swarm Optimization (PSO) is used. In the algorithm, the controller parameters are computed by minimizing a cost function that depends on the Integral Time Absolute Error (ITAE) performance index.

Finally, different numerical simulations are provided in order to illustrate the performances of the designed controller. And for comparison purposes, a PID controller is designed and optimized using the PSO to control the quadcopter. The obtainediresults indicated a superiority in performance for the IBC over the PID controller based on some points among which are: a 13.3% and 30.5% lesser settling times for X and Y consequently, the ability to perform critical maneuvers that the quadcopter failed to do using the PID controller, and the capability of fast following up and conforming the changes of pitch (

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
Journal Of Engineering
Preparation of Design Charts for Estimation of the Length of an Upstream Impervious Blanket in a Homogenous Earth Dam
...Show More Authors

Publication Date
Mon Sep 01 2014
Journal Name
19th International Conference On Methods And Models In Automation And Robotics (mmar) 2014
A PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots
...Show More Authors

Scopus (22)
Crossref (20)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
A Haptic feedback system based on leap motion controller for prosthetic hand application
...Show More Authors

Leap Motion Controller (LMC) is a gesture sensor consists of three infrared light emitters and two infrared stereo cameras as tracking sensors. LMC translates hand movements into graphical data that are used in a variety of applications such as virtual/augmented reality and object movements control. In this work, we intend to control the movements of a prosthetic hand via (LMC) in which fingers are flexed or extended in response to hand movements. This will be carried out by passing in the data from the Leap Motion to a processing unit that processes the raw data by an open-source package (Processing i3) in order to control five servo motors using a micro-controller board. In addition, haptic setup is proposed using force sensors (F

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller
...Show More Authors

Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order  PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to  torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 01 2013
Journal Name
International Journal Of Computer Applications
Concise Architecture of a Remote Network based Controller
...Show More Authors

The development of microcontroller is used in monitoring and data acquisition recently. This development has born various architectures for spreading and interfacing the microcontroller in network environment. Some of existing architecture suffers from redundant in resources, extra processing, high cost and delay in response. This paper presents flexible concise architecture for building distributed microcontroller networked system. The system consists of only one server, works through the internet, and a set of microcontrollers distributed in different sites. Each microcontroller is connected through the Ethernet to the internet. In this system the client requesting data from certain side is accomplished through just one server that is in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Indian Journal Of Natural Sciences
Design and Test of Electrochemistry of Electrodes Catalysis for an Alkaline Fuel Cell
...Show More Authors

Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations
...Show More Authors

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The Modified Quadrature Method for solving Volterra Linear Integral Equations
...Show More Authors

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

View Publication Preview PDF
Crossref