A tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum.
The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.
The current study was designed to evaluate the anti-inflammatory effect of GKB in the rat model of granulomatous inflammation. Thirty rats were distributed into five groups: The first group served as negative control group that received distilled water (DW) only without inducting inflammation, positive control group; treated with DW with the induction of inflammation and they were assigned to cotton pellet-induced granuloma, ginkgo biloba (GKB) treated group (200mg/kg/day), dexamethasone-treated group (1mg/kg), and Prednisolone treated group (5mg/kg). All the treatments were given orally for seven consecutive days. On day eight, the rats were anesthetized and the pellets together with granulation tissue were carefully removed
... Show MoreLasmiditan (LAS) is a recently developed antimigraine drug and was approved in October, 2019 for the treatment of acute migraines; however, it suffers from low oral bioavailability, which is around 40%.
This study aimed to improve the LAS bioavailability via formulation as nanoemulsionbased in situ gel (NEIG) given intranasally and then compare the traditional aqueous-LASsuspension (AQS) with the two successful intranasal prepared formulations (NEIG 2 and NEIG 5) in order to determine its relative bioavailability (F-relative) via using rabbits.
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
The neutrophil/ lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) have the potential to be inflammatory markers that reflect the activity of many inflammatory diseases. The aim of this study was to evaluate the NLR and PLR as potential markers of disease activity in patients with ankylosing spondylitis.
The study involved 132 patients with ankylosing spondylitis and 81 healthy controls matched in terms of age and gender. Their sociodemographic data, disease activity scores using the Bath Ankylosing
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin