Preferred Language
Articles
/
joe-524
Experimental Investigation of the Electro Co-deposition of (Zinc-Nickel) Alloy
...Show More Authors

An experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).     

It has been found that the best bath temperature was 40˚C, specifically at a concentration of 73 g/L of NiCl2.6H2O, has a milestone influence on the nickel composition and structure of the deposits. The potential is a major factor influencing the deposition coating alloy which is adjusted by the operations of the cathodic polarization; rather than the standard potential of the two metals as determined by the e.m.f. series.  The anomalous deposition was obtained at a current density lower than 0.8 A/dm2, while normal deposition occurred at current densities less than 1.2 A/dm2.

Corrosion behavior was exhibited by the bath and for performance was carried out, and it shows that the best corrosion performance was for nickel composition of 10-12.6 wt%.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Innovative Food Science & Emerging Technologies
Non-thermal pasteurization of milk by an innovative energy-saving moderate electrical field equipped with elongated electrodes and process optimization
...Show More Authors

View Publication
Scopus (16)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Environmental Technology & Innovation
Photo-Fenton-like degradation of direct blue 15 using fixed bed reactor containing bimetallic nanoparticles: Effects and Box–Behnken optimization
...Show More Authors

This study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c

... Show More
View Publication
Scopus (18)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Thu Aug 18 2016
Journal Name
Artificial Cells, Nanomedicine, And Biotechnology
Biosynthesis of silver nanoparticles from <i>Catharanthus roseus</i> leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities
...Show More Authors

View Publication
Scopus (149)
Crossref (125)
Scopus Clarivate Crossref
Publication Date
Wed Sep 22 2021
Journal Name
International Journal Of Corrosion And Scale Inhibition
Synthesis of a CoO–ZnO nanocomposite and its study as a corrosion protection coating for stainless steel in saline solution
...Show More Authors

Reaxys Chemistry database information SciVal Topics Metrics Abstract A novel CoO–ZnO nanocomposite was synthesized by the photo irradiation method using a solution of cobalt and zinc complexes and used as a coating applied by electrophoretic deposition (EPD) for corrosion protection of stainless steel (SS) in saline solution. The samples were characterized using powder XRD, scanning electron microscopy (SEM) and electrochemical polarization. It was also found that the coating was still stable after conducting the corrosion test: it contained no cracks and CoO–ZnO nanocomposites clearly appeared on the surface. SEM showed that the significant surface cracking disappeared. XRD confirmed that CoO–ZnO nanocomposites comprised CoO and Zn

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 06 2022
Journal Name
Nature Environment And Pollution Technology
Green Synthesis Of Bimetallic Iron/Copper Nanoparticles Using Ficus Leaves Extract For Removing Orange G(OG) Dye From Aqueous Medium
...Show More Authors

This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed

... Show More
View Publication
Scopus (12)
Crossref (11)
Scopus Crossref
Publication Date
Tue Mar 15 2022
Journal Name
Journal Of Baghdad College Of Dentistry
Natural preparation of rice husk-derived silica and eggshell-derived calcium carbonate composite as a coating material for dental implant
...Show More Authors

Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (8)
Scopus Crossref
Publication Date
Mon Dec 15 2025
Journal Name
Bionatura Journal: Ibero-american Journal Of Biotechnology And Life Sciences
Fourteen Years of Organic Amendments Enhance Soil Organic Carbon in Semiarid Iraqi Soils: FTIR Spectroscopy, PLS Modelling and RothC Simulations
...Show More Authors

Long-term organic amendments are a key strategy to build soil organic carbon (SOC) stocks in semiarid agroecosystems, where low biomass inputs and calcareous parent material constrain carbon accumulation. This 14-year field experiment in central Iraq (2000–2014) evaluated how a gradient of organic matter (OM) additions (0, 1, 2.5, 5, 10, and 20%) affects SOC dynamics, nutrient availability, and soil organic matter composition in clay-dominated, semiarid soils. Surface and subsurface samples (0–30, 30–60, and 60–90 cm) were analysed for SOC, nutrients, and mid-infrared Fourier transform infrared (FTIR) spectra, which were then integrated with Partial Least Squares (PLS) regression and RothC simulations. Moderate OM inputs (5

... Show More
View Publication
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Lettuce Leaves as Biosorbent Material to Remove Heavy Metal Ions from Industerial Wastewater
...Show More Authors

The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Polluted Water Sensor Based on Carbon Quantum Dots/Alq3 Using Drop Casting and Spin Coating Techniques
...Show More Authors

Water quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 12 2021
Journal Name
Systematic Review In Pharmacy
CUPPER(||)AND MERCURY (||)Complexes WITH SCHIFF BASE LIGAND FROM BENZIDIN WITH ISATIN AND BENZOIN:SYNTHESIS,SPECTRAL CHARACTERIZATION, THERMAL STUDIES AND BIOLOGICAL ACTIVITIES
...Show More Authors

CUPPER(||)AND MERCURY (||)Complexes WITH SCHIFF BASE LIGAND FROM BENZIDIN WITH ISATIN AND BENZOIN:SYNTHESIS,SPECTRAL CHARACTERIZATION, THERMAL STUDIES AND BIOLOGICAL ACTIVITIES