Preferred Language
Articles
/
joe-478
GNSS Baseline Configuration Based on First Order Design
...Show More Authors

The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution  of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.

FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, which lead to a homogenous and anisotropic network, respectively  using Matlab programming language (V. 2012a). Al Ghammas Township, Al-Qadisiya city, which consists of twenty-five stations was taken as a study area in this research.

The results showed that there are 300 potential baselines for the GNSS network of the study area, which were reduced during the optimum configuration to about 70% of the total potential baselines by applying FOD-p, and there is high level of improvement in the objective functions of precision which  reached to about 90% .

 

View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Water Quality Assessment and Sodium Adsorption Ratio Prediction of Tigris River Using Artificial Neural Network
...Show More Authors

Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201

... Show More
Publication Date
Mon Jan 19 2026
Journal Name
Al–bahith Al–a'alami
New Methods and Old Issues: Theoretical and Methodological Approaches to Social Network Sites in the Arab Region
...Show More Authors

This paper critically looks at the studies that investigated the Social Network Sites in the Arab region asking whether they made a practical addition to the field of information and communication sciences or not. The study tried to lift the ambiguity of the variety of names, as well as the most important theoretical and methodological approaches used by these studies highlighting its scientific limitations. The research discussed the most important concepts used by these studies such as Interactivity, Citizen Journalism, Public Sphere, and Social Capital and showed the problems of using them because each concept comes out of a specific view to these websites. The importation of these concepts from a cultural and social context to an Ara

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Parallel Routing in Wireless Sensor Network
...Show More Authors

The limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2016
Journal Name
International Journal Of Engineering Research And Advanced Technology (ijerat)
Speeding Up Back-Propagation Learning (SUBPL) Algorithm: A New Modified Back_Propagation Algorithm
...Show More Authors

The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.

View Publication
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks
...Show More Authors

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Accuracy Assessment of Stonex X-300 Laser Scanner Cameras
...Show More Authors

Assessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.

In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.

To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (38)
Crossref (20)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (4)
Crossref