Preferred Language
Articles
/
joe-472
Properties of Superpave Asphalt Concrete Subjected to Impact of Moisture Damage
...Show More Authors

Moisture damage is a primary mode of distress occurring in hot mix asphalt (HMA) pavements in Iraq. Because of the loss of bond, or stripping, caused by the presence of moisture between the asphalt and aggregate, which is a problem in some areas and can be severe in some cases, it is requires to evaluate the design asphalt mixture to moisture susceptibility. Many factors such as aggregate characteristics, asphalt characteristics, environment, traffic, construction practices and drainage can contribute to stripping. Asphalt concrete mixes were prepared at their optimum asphalt content by superpave system and then tested to evaluate their engineering properties, which include tensile strength, resilient modulus, and permanent deformation, stiffness, and fatigue characteristics. These properties have been evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam. The experimental results, in general, showed that the mixes subjected to moisture damage give low resistance to indirect tensile strength, low resilient modulus at 40 ̊ C, high permanent deformation at 40 ̊ C, low stiffness, and low fatigue life, by (19%, 21%, 93%, 62% and 70%) respectively as compared with unconditioned mixture.

 

View Publication
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Experimental Investigations on the Strength and Serviceability of Biaxial Hollow Concrete Slabs
...Show More Authors

Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads
...Show More Authors

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Discussion on the Structural Design Index and Design Method of Widening and Splicing Lane of Old Asphalt Pavement
...Show More Authors

The splicing design of the existing road and the new road in the expansion project is an important part of the design work. Based on the analysis of the characteristics and the load effect of pavement structure on splicing, this paper points out that tensile crack or shear failure may occur at the splicing under the repeated action of the traffic load on the new/old pavement. According to the current structure design code of asphalt pavement in China, it is proposed that the horizontal tensile stress at the bottom of the splicing layer and the vertical shear stress at other layers of the splicing line should be controlled by adjusting the position and size of the excavated steps in addition to the conventional design ind

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL AND THEORETICAL INVESTIGATIONS FOR BEHAVIOR OF PRECAST CONCRETE GIRDERS WITH CONNECTIONS
...Show More Authors

This research presents experimental and theoretical investigation of 15 reinforced concrete spliced and nonspliced girder models. Splices of hooked dowels and cast in place joints, with or without strengthening steel plates were used. Post-tensioning had been used to enhance the splice strength for some spliced girders. The ANSYS computer program was used for analyzing the spliced and non-spliced girders. A nonlinear three dimensional element was used to represent all test girders. The experimental results have shown that for a single span girder using steel plate connectors in the splice zone has given a sufficient continuity to resist flexural stresses in this region. The experimental results have shown that the deflection of hooked do

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Feb 09 2024
Journal Name
Sustainability
Enhancing Asphalt Performance and Its Long-Term Sustainability with Nano Calcium Carbonate and Nano Hydrated Lime
...Show More Authors

Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly

... Show More
View Publication
Scopus (18)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Mon Aug 05 2019
Journal Name
Journal Of Engineering
Behaviour of Segmental Concrete Beams Reinforced by Pultruded CFRP Plates: an Experimental Study
...Show More Authors

Research aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect Different Radioactive Dose on Mechanical Properties of Composite Material from Novolak Resin Exposure to High – Energy Radiation
...Show More Authors

The research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.

      The impregnation method is used in test sample preparation, using molding by pressure presses.

      All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.

      The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 14 2021
Journal Name
The Open Civil Engineering Journal
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass p

... Show More
View Publication Preview PDF
Crossref (15)
Crossref