Preferred Language
Articles
/
joe-455
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was checked by comparing it's results with the results of six forecasting models developed for the same data by Al-Suhili and khanbilvardi, 2014.The check of the performance of the new developed model was made for three forecasted series for each variable, using the Akaike test which indicates that the developed model is more successful, since it gave the minimum (AIC) values for (91.67 %) of the forecasted series. This indicates that the developed model had improved the forecasting performance. For the rest of cases (8.33%), other models gave the lowest AIC value, however it is slightly lower than that given by the developed model. Moreover the t-test for monthly means comparison between the models indicates that the developed model has the highest percent of succeed (100%).

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Functionalization of single and multi-walled carbon nanotubes by chemical treatment
...Show More Authors

In this work we experimentally investigated SWCNTs and MWCNTs to increase their thermal conductivity and electrically functionalization process using different reagents ((nitric acid, HNO3 followed by acid treatment with H2SO4), then washed with deionized water (DW) and then treated with H2O2 via ultrasonic technique. Then repeated the steps with MWCNTs and compare their results in an effort to improve experimental conditions that efficiently differentiate the surface of the single walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubesi(MWCNTs) that less nanotubes destroy and to enhance the properties of them and also to reduce aggregation in liquid. the results were prove by XRD, and infrared spectroscopy (FTIR). The FTIR sp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Conference Of Numerical Analysis And Applied Mathematics Icnaam 2019
Functionalized multi-walled carbon nanotubes network sensor for NO2 gas detection at room temperature
...Show More Authors

View Publication
Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Applied Soft Computing
Evolutionary multi-objective set cover problem for task allocation in the Internet of Things
...Show More Authors

View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Computational And Theoretical Nanoscience
Solution for Multi-Objective Optimisation Master Production Scheduling Problems Based on Swarm Intelligence Algorithms
...Show More Authors

The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (13)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A hybrid Grey Wolf optimizer with multi-population differential evolution for global optimization problems
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Nov 12 2014
Journal Name
Wireless Personal Communications
A Multi-objective Disjoint Set Covers for Reliable Lifetime Maximization of Wireless Sensor Networks
...Show More Authors

View Publication
Scopus (19)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Applied Soft Computing
Evolutionary multi-objective set cover problem for task allocation in the Internet of Things
...Show More Authors

Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution
...Show More Authors

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M

... Show More
View Publication Preview PDF
Crossref