Preferred Language
Articles
/
joe-439
Numerical Analysis of Fluid Flow and Heat Transfer by Forced Convection in Channel with one-sided Semicircular Sections and Filled with Porous Media
...Show More Authors

This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer  in two cases ,the first: changing the radius (r = 0.25H , 0.5H ,and 0.75H) . and changing the distance between these radiuses (P = 3r, 5r, 7r,and 9r) . also the effect of changing the Reynolds number in (Re=50, 100, 150,and 200) is study .The results showing that the increase in the Radius , the distance between the sections and Reynolds number lead to increase the rate of heat transfer . and the presence of porous media prevents the phenomena of separation and vortex formation in flow.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe
...Show More Authors

This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Int. J. Eng. Ra
Pressure Gradient Influence on MHD Flow for Generalized Burgers’ Fluid with Slip Condition
...Show More Authors

This paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for

... Show More
View Publication
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System
...Show More Authors

In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
DISSOLUTION OF BENZENE IN THE SATURATED POROUS MEDIA
...Show More Authors

The aim of the present research is to study the dissolution and transport process of
benzene as a light nonaqueous phase liquid (LNAPL) in saturated porous media.
Unidirectional flow at water velocities ranged from 0.90 to 3.60 cm/hr was adopted to study
this process in a three dimensional saturated sand tank (100 cm×40 cm×35 cm). This tank
represents a laboratory-scale aquifer. The aquifer was constructed by packing homogeneous
sand in the rectangular tank. The experimental results were used to characterize the
dissolution behavior of an entrapped nonaqueous phase benzene source in a three dimensional
aquifer model. The time invariant average mass transfer coefficient was determined at each
interstitial velocit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
MIXED CONVECTION PHENOMINA AFFECTED BY RADIATION IN A HORIZONTAL RECTANGULAR DUCT WITH COCENTRIC AND ECCENTRIC CIRCULAR CORE
...Show More Authors

The numerical investigation has been performed to study the radiation affected steady state laminar mixed convection induced by a hot inner varied positions circular core in a horizontal rectangular channel for a fully developed flow. To examine the effects of thermal radiation on thermo fluid dynamics behavior in the eccentric geometry channel, the generalized body fitted co-ordinate system is introduced while the finite difference method is used for solving the radiative transport equation. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function. After validating numerical results for the case without radiation, the detailed radiatio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 31 2018
Journal Name
Heat Transfer-asian Research
Comparative study on heat transfer enhancement of nanofluids flow in ribs tube using CFD simulation
...Show More Authors

View Publication
Scopus (20)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Effect of Journal Misalignment on the Static Characteristics of Porous Journal Bearings Lubricated with Couple Stress Fluid
...Show More Authors

In this paper, a theoretical study to the effect of journal misalignment on the static characteristics of oil filled porous journal bearing when lubricated with couple stress fluid has been carried out.

The analytical model used through this work is for a bearing with isotropic permeability. Considering isotropic permeability the Reynolds' equation for the oil film is modified to include a so – called filter term and the effect of fluid coupled stress. The pressure equation for the porous medium is obtained from Darcy's law and continuity equation. The equation which was used to evaluate the oil film thickness was modified to include the effect of possible misalignment in longitudinal and transverse directions. The governing eq

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Energy Storage
A hybrid solidification enhancement in a latent-heat storage system with nanoparticles, porous foam, and fin-aided foam strips
...Show More Authors

Scopus (27)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sat Apr 12 2025
Journal Name
Al-khwarizmi Engineering Journal
Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector
...Show More Authors

Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Influence of Varying Temperature and Concentration on Magnetohydrodynamics Peristaltic Transport for Jeffrey Fluid with a Nanoparticles Phenomenon through a Rectangular Porous Duct
...Show More Authors

A mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref