Preferred Language
Articles
/
joe-439
Numerical Analysis of Fluid Flow and Heat Transfer by Forced Convection in Channel with one-sided Semicircular Sections and Filled with Porous Media
...Show More Authors

This research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer  in two cases ,the first: changing the radius (r = 0.25H , 0.5H ,and 0.75H) . and changing the distance between these radiuses (P = 3r, 5r, 7r,and 9r) . also the effect of changing the Reynolds number in (Re=50, 100, 150,and 200) is study .The results showing that the increase in the Radius , the distance between the sections and Reynolds number lead to increase the rate of heat transfer . and the presence of porous media prevents the phenomena of separation and vortex formation in flow.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 01 2008
Journal Name
Al-khwarizmi Engineering Journal
The Effects of Vortex Generator Types on Heat Transfer and Flow Structure in a Rectangular Duct Flows
...Show More Authors

    In this numerical study a detailed evaluation of the heat transfer characteristics and flow structure in a laminar and turbulent flow through a rectangular channel containing built-in of different type vortex generator has been a accomplished in a range of Reynolds number between 500 and 100,000.A modified version of ESCEAT code has been used to solve Navier-Stokes and energy equations. The purpose of this paper is to present numerical comparisons in terms of temperature, Nusselt number and flow patterns on several configurations of longitudinal vortex generator including new five cases. The structures of heat and flow were studied, using iso-contours of velocity components, vortices, temperature and Nusselt n

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
An experimental and numerical investigation of heat transfer effect on cyclic fatigue of gas turbine blade
...Show More Authors

Blades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Hall and Joule's heating Influences on Peristaltic Transport of Bingham plastic Fluid with Variable Viscosity in an Inclined Tapered Asymmetric Channel
...Show More Authors

   This paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Mechanical Engineering Research And Developments
Numerical investigation for Natural Convection in a square Enclosure with partially active thermal sides' wall
...Show More Authors

Three-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.

Scopus
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector
...Show More Authors

A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherw

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 09 2021
Journal Name
Nanomaterials
Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements
...Show More Authors

Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,

... Show More
View Publication Preview PDF
Scopus (40)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Wed Aug 14 2019
Journal Name
Heat Transfer-asian Research
Characteristics of heat transfer of impingement system with swap swirl generator
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2013
Journal Name
Australian Journal Of Basic And Applied Sciences
CFD Simulation of Heat Transfer Augmentation in Constant Heat-Fluxed Tube fitted with Baffled Twisted Tape Inserts
...Show More Authors

Publication Date
Tue Oct 17 2017
Journal Name
Spe/iatmi Asia Pacific Oil & Gas Conference And Exhibition
Retention of Silica Nanoparticles in Limestone Porous Media
...Show More Authors

Nanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D

... Show More
Scopus (41)
Crossref (18)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Compound Heat Transfer Enhancement in Dimpled and Sinusoidal Metal Solar Wall Ducts Fitted with Wired Inserts
...Show More Authors

An improved Metal Solar Wall (MSW) with integrated thermal energy storage is presented in this research. The proposed MSW makes use of two, combined, enhanced heat transfer methods. One of the methods is characterized by filling the tested ducts with a commercially available copper Wired Inserts (WI), while the other one uses dimpled or sinusoidal shaped duct walls instead of plane walls. Ducts having square or semi-circular cross sectional areas are tested in this work.
A developed numerical model for simulating the transported thermal energy in MSW is solved by finite difference method. The model is described by system of three governing energy equations. An experimental test rig has been built and six new duct configurations have b

... Show More
View Publication Preview PDF
Crossref