The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge have the most significant affect on the predicted TDS concentrations. The results showed that a network with (8) hidden neurons was highly accurate in predicting TDS concentration. The correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE) between measured data and model outputs were calculated as 0.975, 113.9 and 11.51%, respectively for testing data sets. Comparisons between final results of ANNs and multiple linear regressions (MLR) showed that the ANNs model could be successfully applied and provides high accuracy to predict TDS concentrations as a water quality parameter.
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreRegression Discontinuity (RD) means a study that exposes a definite group to the effect of a treatment. The uniqueness of this design lies in classifying the study population into two groups based on a specific threshold limit or regression point, and this point is determined in advance according to the terms of the study and its requirements. Thus , thinking was focused on finding a solution to the issue of workers retirement and trying to propose a scenario to attract the idea of granting an end-of-service reward to fill the gap ( discontinuity point) if it had not been granted. The regression discontinuity method has been used to study and to estimate the effect of the end -service reward on the cutoff of insured workers as well as t
... Show Morel development in addition to environmental reform, which is not possible at its best, and from this the faculties of physical education and sports science realize the scale of the problem and its importance in the development of society that this all puts on the faculties of education Physical and sports sciences are a very difficult task and an end in holiness, for it is the responsibility of the human development service and its leadership, because the community leaders and its elites are those who value their direction and future more than others. The importance of this study comes from the goal of sustainable development to maximizing pain. The net gain from higher education while ensuring the preservation of the quality of reso
... Show MoreThis work deals with the reporting of four helminthes in the rook partridge Alectoris graeca collected in G'ara area west of Iraq. The infection rates of the cestodes, Raillietina alectori and R. tetragona and the nematode. Hartertia gallinarum, and the trematode. Postharmostomum gallinum were 6.38%, 40.43%, 10.63%, and 10.63% respectively. The host relationships were discussed.
Ten species of whiteflies (Hemiptera, Aleyrodidae) representing six genera were studied from a collection from different localities in the middle of Iraq. These species are Acaudaleyrodes rachipora (Singh, 1931); Bemisia afer (Priesner and Hosny,1934); Bemisia tabaci (Gennadius, 1889); Dialeurodes citri (Ashmead,1885); Dialeurodes kirkaldy (Kotinsky, 1907); Neomaskellia andropogonis Corbett, 1926; Siphoninus phillyreae (Haliday, 1835); Trialeurodes ricini (Misra, 1924); Trialeurodes vapovariorum (Westwood,1856) and Trialeurodes irakeensis (Al-Malo and Abdul-Rassoul, 2000). Notes are given on their localities, date of c
... Show More