Preferred Language
Articles
/
joe-354
Internal Convective Heat Transfer Effect on Iraqi Building Construction Cooling Load
...Show More Authors

This work involves the calculation of the cooling load in Iraqi building constructions taking in account the effect of the convective heat transfer inside the buildings. ASHRAE assumptions are compared with the Fisher and Pedersen model of estimation of internal convective heat transfer coefficient when the high rate of ventilation from ceiling inlet configuration is used. Theoretical calculation of cooling load using the Radiant Time Series Method (RTSM) is implemented on the actual tested spaces. Also the theoretical calculated cooling loads are experimentally compared by measuring the cooling load in these tested spaces. The comparison appears that using the modified Fisher and Pedersen model when large ventilation rate is used; modify the results accuracy to about 10%.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Influence of Rotation and Inclined Magnetic Field with Mixed Convective Heat and Mass Transfer in an Inclined Symmetric Channel on Peristaltic Flow with Slip Conditions
...Show More Authors

     In paper, we study the impact of the rotationn inclined magnetic felid and inclined symmetric channel with slip condition on peristaltic transport using incompressible non-Newtonian fluid. Slip conditions for the concentration and heat transfer are considered. We use the conditions on the fluid, namely infinite wavelength and low - Reynolds number to simplify the governed equations that described - motion flow, energy and concentration. These equations ofroblem are solved by the perturbation technique and restricted the number of Bingham to a small value to find the final expression of the stream function. The Bingham number, Brinkman number, Soret number, Dufour number, temperature, Hartman number and other parameters are teste

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Effect of Air Bubbles on Heat Transfer Coefficient in Turbulent Convection Flow
...Show More Authors

Experimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Investigation of the Effect of Curvature Ratio on Heat Transfer in Double Pipe Helical Heat Exchanger
...Show More Authors

Different parameters of double pipe helical coil were investigation experimentally. Four coils were used; three with a curvature ratio (0.037, 0.031, and 0.028) and 11mm diameter of the inner tube while the fourth with 0.033 curvature ratio and 13 mm diameter of the inner tube. The hot water flow in the inner tube whereas the cold water flows in the annulus. The inlet temperatures of hot and cold water are 50 0C and 18 0C respectively. The inner mass flow rate ranges from 0.0167 to 0.0583 kg/s. The results show the Nusselt number increase with increase curvature ratio. The Nusselt number of the coil with 0.037 curvature ratio increases by approximately 12.3 % as compare with 0.028 curvature ratio. The results also r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Proceedings Of The Institution Of Civil Engineers - Structures And Buildings
Effect of soil saturation on load transfer in a pile excited by pure vertical vibration
...Show More Authors

A comparison between the resistance capacity of a single pile excited by two opposite rotary machines embedded in dry and saturated sandy soil was considered experimentally. A small-scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of: two small motors supplied with eccentric mass 0·012 kg and eccentric distance 20 mm representing the two opposite rotary machines, an aluminum shaft with 20 mm in diameter as the pile, and a steel plate with dimensions of (160 × 160 × 20 mm) as a pile cap. The experimental work was achieved taking the following parameters into consideration, pile embedment depth ratio (L/d; length to diameter) and operating freq

... Show More
View Publication
Scopus (12)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Two Stage Evaporative Cooling of Residential Building Using Geothermal Energy
...Show More Authors

The weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe
...Show More Authors

This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct
...Show More Authors

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Restriction Shape On Laminar Natural Convection Heat Transfer In A Vertical Circular Tube
...Show More Authors

Natural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
An experimental and numerical investigation of heat transfer effect on cyclic fatigue of gas turbine blade
...Show More Authors

Blades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Heat Transfer Analysis and Magnetohydrodynamics Effect on Peristaltic Transport of Ree–Eyring Fluid in Rotating Frame
...Show More Authors

This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with  systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.

View Publication Preview PDF
Scopus (5)
Scopus Crossref