Ball and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes, namely: single point stabilizing, circular trajectory tracking, and square trajectory tracking. The results obtained have shown that sliding mode controller is able to follow the desired test signals with low error.
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Disasters, crises and wars are a serious and unforeseen threat. The capacity of the early warning system to monitor such crises is therefore crucial. The ability to make quick decisions in a short time is necessary to prevent crises from occurring. Here, the role and effectiveness of the early warning system emerges through its ability to monitor, record and analyze signals. It can also be evidenced by its ability to immediately convey these indicators to the concerned authorities to take measures that ensure these conflicts and disasters do not worsen. The system’s ability to detect disasters and crises, identify the crisis and its type, and use the scientific method and common sense to deal with it is something that contributes to findi
... Show MoreAs population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some
... Show MoreAim: The present study aims to improve the poor water solubility of zaltoprofen which is a non-steroidal anti-inflammatory drug (NSAIDs) with a potent analgesic effect using solid dispersion then formulate it as a hollow type suppository to be more convenient for geriatric patients. Materials and Method: Zaltoprofen solid dispersions were prepared by solvent evaporation technique in different zaltoprofen: Soluplus® ratios. Results: Among the formulations tested, zaltoprofen solid dispersion preparation using 1:5 (zaltoprofen: Soluplus®) ratio showed the highest solubility and selected for further investigation. Solid dispersion characterization was evaluated by differential scanning calorimetry (DSC), X-ray diffraction study (XRD) and Fou
... Show MoreWell integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with
... Show MoreAbstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show More