Rutting is one of the major distresses in pavement. The objective of this paper is to develop an improved asphalt binder grading system for Iraq based on the principal of Superpave system, and increasing performance grade of product asphalt binder in Iraq using polymers without raising the viscosity of the binder. Two types of polymers are used, Plastomers, Functionalized Polyethylene (PE) which is developed by asphalt research group in Wisconsin University in the USA, and Elastomers, Styrene Butadiene Styrene (SBS) with and without cross linker. Mastercurve are drown for these modified binders, Rolling thin film aged, to show effects on rheological properties at high temperature for complex modulus (G*) and phase angle (δ). It concluded that 3.5% of Functionalized Polyethylene polymer (PE) is more effective than 4% of Styrene Butadiene Styrene (SBS) to shift up performance grade of local asphalt binder two grades to be PG (76-16). Furthermore, the viscosity of binders increasing about 200% when using 4 % SBS, while no significant effect on viscosity when using 3.5 % of PE, therefore, there is no need to increase temperature of mixing and compaction which may be effect on polymers In addition G*/sinδ is increased by a ratios of 1.6 to 2.96 for 2%, 4% respectively of SBS-based modifier (RTFO aged) and 1.4 to 3 for 2%, 3.5% respectively of PE-based polymers modifier. It can be seen that PE reduce G*.sinδ about 10%, while SBS increase G*.sinδ about 30% and PE reduces the stiffness of asphalt binder about 15 % at low temperature which make PE more effective, there is no significant effects on m-value.
This study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show More The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreThe aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Finding a new source of resistance is important to reduce the use of synthetic pesticides, which can meet the global need of suppressing pollution. In this study, the resistance of eight eggplant cultivars to Aphis gossypii was evaluated. Results of the current study highlighted that the cultivar Long-Green has a very strong resistance after 14 days post infestation whereas Pearl-Round and White-Casper cultivars were susceptible. The rest of the tested cultivars (Green-oblong, Purple-panter, Paris, Ashbilia, and Barcelona) had mild resistance. Also, the study found significant differences between the infested and non-infested plants among the tested cultivars in the plant’s height, fresh-, and dry-weight. The susceptible cultivars
... Show More