Curing of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for the proposal curing test method and normal strength
using normal curing method at ages 7 and 28 day for the five different chemical composition of
cement with different water to cement ratios equal to 0.45, 0.55, 0.65 and 0.75. Linear and
nonlinear regression analysis show high correlation for the different types of the accelerated curing
methods with coefficient of correlation (R2) more than 0.9.
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
Estimation of the tail index parameter of a one - parameter Pareto model has wide important by the researchers because it has awide application in the econometrics science and reliability theorem.
Here we introduce anew estimator of "generalized median" type and compare it with the methods of Moments and Maximum likelihood by using the criteria, mean square error.
The estimator of generalized median type performing best over all.
Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show More