Agent technology has a widespread usage in most of computerized systems. In this paper agent technology has been applied to monitor wear test for an aluminium silicon alloy which is used in automotive parts and gears of light loads. In addition to wear test monitoring، porosity effect on
wear resistance has been investigated. To get a controlled amount of porosity, the specimens have
been made by powder metallurgy process with various pressures (100, 200 and 600) MPa. The aim of
this investigation is a proactive step to avoid the failure occurrence by the porosity.
A dry wear tests have been achieved by subjecting three reciprocated loads (1000, 1500 and 2000)g
for three periods (10, 45 and 90)min. The weight difference after each test is immediately measured to
find the losing weight and wear rate for each specimen. Wear test was monitored online by two
sensors, force sensor to control the applied load, find friction force and coefficient of friction. The
sensor is an acoustic emission to detect crack initiations of the worn surface by transfers the emitted
ultrasonic waves from crack initiations to electric signals. Scanning electron microscope has been
used to examine the worn surfaces. The overall results include that the effect of pores depends on pore
shapes, sizes and concentrations.
The research endeavors to harness the benefits stemming from the integration of constraint theory into construction project management, with the primary goal of mitigating project completion delays. Additionally, it employs fuzzy analysis to determine the relative significance of fundamental constraints within projects by assigning them appropriate weights. The research problem primarily revolves around two key issues. Firstly, the persistent utilization of outdated methodologies and a heavy reliance on workforce experience without embracing modern computerized technologies. Secondly, the recurring problem of project delivery delays. Construction projects typically encompass five fundamental constraint types: cost restrictions, tim
... Show MoreAbstract
This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis
... Show MorePhenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreWe examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.
4-Thiazolidinone were synthesized by three steps,the reaction of ansoyl chloride with 4hydroxy benzaldehyde to give 4-(4`-methoxy benzoyloxy) benzaldehyde[I].The reaction of later compound with thiosemicarbazideled to formation thiosemicarbazon [II] and the reacted thiosemicarbazone with chloro acetic acid in CH3CO2Na medium to yield 4- thiazelidinone compound[III].The 4-thiazolidinone [III]was used as a key intermediates to synthesis new compounds, compound[IV] synthesized from the reaction [III] with acetic anhydride, while the reaction of compound [III] with amines to yield azo compound[V]a,b,c. The azo compound reacted with benzoyl chloride or anisole chloride in basic medium to get a new esters compound[VI]a,b. Also, synthesi
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe predilection for 5G telemedicine networks has piqued the interest of industry researchers and academics. The most significant barrier to global telemedicine adoption is to achieve a secure and efficient transport of patients, which has two critical responsibilities. The first is to get the patient to the nearest hospital as quickly as possible, and the second is to keep the connection secure while traveling to the hospital. As a result, a new network scheme has been suggested to expand the medical delivery system, which is an agile network scheme to securely redirect ambulance motorbikes to the nearest hospital in emergency cases. This research provides a secured and efficient telemedicine transport strategy compatible with the
... Show MoreThe corrosion of metals is of great economic importance. Estimates show that the quarter of the iron and the steel produced is destroyed in this way. Rubber lining has been used for severe corrosion protection because NR and certain synthetic rubbers have a basic resistance to the very corrosive chemicals particularly acids. The present work includes producing ebonite from both natural and synthetic rubbers ; therefore, the following materials were chosen to produce ebonite rubber: a) Natural rubber (NR). b) Styrene butadiene rubber (SBR). c) Nitrile rubber (NBR). d) Neoprene rubber (CR) [WRT]. The best ebonite vulcanizates are obtained in the presence of 30 Pphr sulfur, and carbon black as reinforcing filler. The relation between
... Show More