Agent technology has a widespread usage in most of computerized systems. In this paper agent technology has been applied to monitor wear test for an aluminium silicon alloy which is used in automotive parts and gears of light loads. In addition to wear test monitoring، porosity effect on
wear resistance has been investigated. To get a controlled amount of porosity, the specimens have
been made by powder metallurgy process with various pressures (100, 200 and 600) MPa. The aim of
this investigation is a proactive step to avoid the failure occurrence by the porosity.
A dry wear tests have been achieved by subjecting three reciprocated loads (1000, 1500 and 2000)g
for three periods (10, 45 and 90)min. The weight difference after each test is immediately measured to
find the losing weight and wear rate for each specimen. Wear test was monitored online by two
sensors, force sensor to control the applied load, find friction force and coefficient of friction. The
sensor is an acoustic emission to detect crack initiations of the worn surface by transfers the emitted
ultrasonic waves from crack initiations to electric signals. Scanning electron microscope has been
used to examine the worn surfaces. The overall results include that the effect of pores depends on pore
shapes, sizes and concentrations.
In this work, the photoluminescence spectra (PL) of porous silicon (PS) have been modified by adding gold nanoparticles (AuNPs) to PS layer. PS was produced via Photo electro-chemical etching (PECE) method of n-type Si wafer with resistivity of about (10 Ω.cm) and (100) orientation. Laser wavelength of (630 nm) and illumination intensity of about (30 mW/cm2), etching current density of (10mA/cm2), and etching time of (4 min) were used during the etching process. The bare PS before metallic deposition process and porous silicon/gold nanoparticles (PS/AuNPs) structures were investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX). The photoluminescence spectra were investigated as a fu
... Show MoreIn this paper, the optical emission spectrum (OES) technique was used to analyze the spectrum resulting from the (CdO:CoO) plasma in air, produced by Nd:YAG laser with λ=1064 nm, τ=10 ns, a focal length of 10 cm, and a range of energy of 200-500 mJ. We identified laser-induced plasma parameters such as electron temperature (Te) using Boltzmann plot method, density of electron (ne), length of Debye (λD), frequency of plasma (fp), and number of Debye (ND), using two-Line-Ratio method. At a mixing ratio of X= 0.5, the (CdO:CoO) plasma spectrum was recorded for different energies. The results of plasma parameters caused by laser showed that, with t
... Show MoreTheoretical study computerized has been carried out in electron optics field, to design electrostatic immersion lens , the inverse problem is important method in the design of electrostatic lenses by suggesting an axial electrostatic potential distribution using polynomial function. The paraxial –ray equation is solved to obtain the trajectory particles that satisfy the suggested potential function. In this research, designed immersed lens length L = 10mm operated under zero condition, as it was obtained the electrode shape of this lens solutions using the Laplace equation The results of the search showed low values of spherical and chromatic aberrations, which gives a good indication of the design of the lens. It was
... Show MoreThe use of silicon carbide is increasing significantly in the fields of research and technology. Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well as multiplicative degree-based indices for the isomer of silicon carbide, Si2
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
MWCNTs-OH was used to prepare a flexible gas sensor by deposition as a network on a filter cake using the method of filtration from suspension (FFS). The morphological and structural properties of the MWCNTs network were characterized before and after exposure to Freon gas using FTIR spectra and X-ray diffractometer, which confirmed that the characteristics of the sensor did not change after exposure to the gas. The sensor was exposed to a pure Freon134a gas as well as to a mixture of Freon gas and air with different ratios at room temperature. The experiments showed that the sensor works at room temperature and the sensitivity values increased with increasing operating temperature, to be 58% unt
... Show MoreIn this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p
... Show MoreHemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst
In this paper a comparison of the experimental of evacuated tube solar water heater systems with and without mirror flat reflector. The aim of using the reflector to improve thermal efficiency, and the data gathered which are (temperature, solar irradiation and time) for three days were compared. the results from compared data the temperature lower increase in evacuated tube solar water heater system without reflector than the temperature increase in evacuated tube solar water heater system with reflector .The results show (53, 39, 35) % for three days respectively that the evacuated tube solar water heater system with reflector has higher thermal efficiencies than the results (47, 28, 30) % for three days respectively thermal efficiencies
... Show MoreGas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in