The aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one
dimensional confined compression under both dry and absorbed test conditions.
The test results showed that stabilizing gypseous soil using the optimum fluid content of 16% (5%
cutback asphalt+11% water) have improved the unconfined compressive strength, compressibility,
rebound consolidation, and waterproofing of gypseous soil, but under absorbed condition the
stabilized gypseous soil using cutback asphalt only did not satisfy the requirements for base course
construction, therefore it was decided to use lime additive to improve the properties of soil-cutback
mixture under absorbed condition.
Moisture damage is one of the most significant troubles that destroy asphaltic pavement and reduces road serviceability. Recently, academics have noticed a trend to utilize fibers to enhance the efficiency of asphalt pavement. This research explores the effect of low-cost ceramic fiber, which has high tensile strength and a very high thermal insulation coefficient, on the asphalt mixture's characteristics by adding three different proportions (0.75%, 1.5%, and 2.25%). The Marshall test and the Tensile Strength Ratio Test (TSR) were utilized to describe the impact of ceramic fiber on the characteristics of Marshall and the moisture susceptibility of the hot mix asphalt mixture. The Field Emission Scanning Electron Microsc
... Show MoreThe problem of generated waste as a result of the implementation of construction projects, has been aggravated recently because of construction activity experienced by the world, especially Iraq, which is going through a period of reconstruction, where construction waste represents (20-40%) of the total generated waste and has a negative effect on the environment and economic side of the project. In addition, the rate of consumpted amounts of natural resources are estimated to be about 40% in the construction industry, so it became necessary to reduce waste and to be manage well. This study aims to identify the key factors affecting waste management through the various phases of the project, and this is accom
... Show MoreRutting is one of the most complex and widespread types of distress. The rutting is frequently observed on Iraqi roads, especially at the checkpoints, forming a significant hazard on the asphalt layers. Factors such as heavy loads and high temperatures contribute to this distress. Adding fibers to a hot mix asphalt (HMA) effectively improves performance and extends the lifespan of the flexible pavement. This article used glass, steel, and basalt fibers. The wheel tracking test assessed the fibre-asphalt mixture for rutting resistance and compared it with the mix without adding fibers (control HMA). Meanwhile, the microscopic structure of fibres and asphalt mixture modified with fibers was examined using the Field Emission Scanning E
... Show MoreThe efforts embedded in this paper have been devoted to designing, preparing, and testing warm mix asphalt (WMA) mixtures and comparing their behavior against traditional hot mix asphalt mixtures. For WMA preparation, the Sasobit wax additive has been added to a 40/50 asphalt binder with a concentration of 3%. An experimental evaluation has been performed by conducting the Marshall together with volumetric properties, indirect tensile strength, and wheel tracking tests to acquire the tensile strength ratio (TSR), retained stability index (RSI), and rut depth. It was found that the gained benefit of reduction in mixing and compaction temperatures was reversely associated with a noticeable decline in Marshall properties and moisture s
... Show Moreteen sites Baghdad are made. The sites are divided into two groups, one in Karkh and the other in Rusafa. Assessing the underground conditions can be occurred by drilling vertical holes called exploratory boring into the ground, obtaining soil (disturbed and undisturbed) samples, and testing these samples in a laboratory (civil engineering laboratory /University of Baghdad). From disturbed, the tests involved the grain size analysis and then classified the soil, Atterberg limit, chemical test (organic content, sulphate content, gypsum content and chloride content). From undisturbed samples, the test involved the consolidation test (from this test, the following parameters can be obtained: initial void ratio eo, compression index cc, swel
... Show MoreCloud computing provides huge amount of area for storage of the data, but with an increase of number of users and size of their data, cloud storage environment faces earnest problem such as saving storage space, managing this large data, security and privacy of data. To save space in cloud storage one of the important methods is data deduplication, it is one of the compression technique that allows only one copy of the data to be saved and eliminate the extra copies. To offer security and privacy of the sensitive data while supporting the deduplication, In this work attacks that exploit the hybrid cloud deduplication have been identified, allowing an attacker to gain access to the files of other users based on very small hash signatures of
... Show MoreThis work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain