Theoretical and experimental investigations have been carried out on developing laminar
combined free and forced convection heat transfer in a vertical concentric annulus with uniformly
heated outer cylinder (constant heat flux) and adiabatic inner cylinder for both aiding and opposing
flows. The theoretical investigation involved a mathematical modeling and numerical solution for
two dimensional, symmetric, simultaneously developing laminar air flows was achieved. The
governing equations of motion (continuity, momentum and energy) are solved by using implicit
finite difference method and the Gauss elimination technique. The theoretical work covers heat flux
range from (200 to 1500) W/m2, Re range from 400 to 2000 and (1.36×105 ≤ Ra ≤ 1.1×107) with
radius ratio of 0.555 which is the same radius ratio used in the experimental part of this study and
Pr=0.7. The experimental work includes construct a rig consists essentially of an annulus with
uniformly heated outer cylinder and adiabatic inner cylinder to give clear insight into heat transfer
process and compare its results with that obtained in theoretical part, the range of the study are
(Re= 383, 724, 1000, 1500) and heat flux equal to (q =370, 422, 588, 980) W/m2. Numerical results
were represented by the temperature profile, axial velocity profile, outer surface temperature and
the distribution of local Nusselt number along the dimensionless axial distance. The velocity and
temperature profile results have revealed that the secondary flow created by natural convection have
significant effects on the heat transfer process. Results reveal also that the experimental local
Nusselt number along the annulus follows the same trend as present theoretical results with mean
difference 10.23 %.
The current study presents an experimental investigation of heat transfer and flow characteristic for subcooled flow boiling of deionized water in the microchannel heat sink. The test section consisted of a single microchannel having 300μm wide nominal dimensions and 300μm height (hydraulic diameter of 300μm). The test section formed of oxygen-free copper with 72mm length and 12mm width. Experimental operation conditions spanned the heat flux (78-800) kW/m2, mass flux (1700 and 2100) kg/m2.s at 31˚C subcooled inlet temperature. The boiling heat transfer coefficient is measured and compared with existing correlations. Also, the experimental pressure drop is measured and compared with microscale p
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreThe two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreIn this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
In this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the int
... Show MoreThe heat and mass transfer coefficients of the indirect contact closed circuit cooling tower, ICCCCT, were investigated experimentally. Different experiments were conducted involving the controlling parameters such as air velocity, spray water to air mass flow rate ratio, spray water flow rate, ambient air wet bulb temperature and the provided heat load to investigate their effects on the performance of the ICCCCT. Also the effect of using packing on the performance of the ICCCCT was investigated. It was noticed that these parameters affect the tower performance and the use of packing materials is a good approach to enhance the performance for different operational conditions. Correlations for mass and heat transfer coefficients are pres
... Show MoreBlades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.