Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
diameter (3, 4, 5) mm. have been used to fabricate the joint. Effect of tool pin profile on mechanical properties of welded joints were investigated using different mechanical tests including (tensile, bending and microhardness tests). Microstructure characteristic during (FSW) process was studied and different welding joint were investigated using optical microscope. Based on the stir welding experiments conducted in this study the results show that aluminum alloy (2218-T72) can be welded using (FSW) process with maximum welding efficiency (86.95%) and (83.21%) in terms of ultimate tensile strength and bending force respectively using tool pin profile (threaded cylindrical with flat) with rotation diameter (5) mm, rotation speed (900rpm) and (30mm/min) welding speed.
Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000) and the damping ratio is varied from (0.4 to 0.8).
The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%,
... Show MoreHydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at dif
... Show MoreIn this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups
... Show MoreHydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil
... Show MoreNon-thermal argon plasma needle at atmospheric pressure was
constructed. The experimental setup was based on a simple and low
cost electric component that generates a sufficiently high electric
field at the electrodes to ionize the argon gas which flow at
atmospheric pressure. A high AC power supply was used with 1.1
kV and 19.57 kHz. Non-thermal Argon plasma used on blood
samples to show the ability of non-thermal plasma to promote blood
coagulation. Three tests have been done to show the ability of plasma
to coagulate both normal and anti-coagulant blood. Each blood
sample has been treated for varying time from 20sec. to 180sec. at
different distances. The results of the current study showed that the
co
New complexes of Al(III) such as [Al (Ura) (Phen) (OH2) Cl ] Cl. 2H2O, [Al(Ura)2(OA)(OH2)Cl].H2O and [Al(Ura)3Cl3]H2O type, where (Ura)=Uracil, (Phen)= 1,10-Phenanthroline monohydrate and (OA)= Oxalic acid dihydrate, were prepared. The elemental microanalysis, FT.IR, electronic spectra, and magnetic susceptibility as well as the conductivity measurements are characterized. For isolated three complexes for six coordinated of Al(III) are proposed with molecular formulas that depend on the nature of (Ura), (Phen) and (OA) present. The suggested molecular structure into all complexes for aluminum ion is octahedral geometries .The antibacterial efficacy was examined from metal salt (AlCl3), ligands and metal complexes into the pathogenic bacteri
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show More