Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
diameter (3, 4, 5) mm. have been used to fabricate the joint. Effect of tool pin profile on mechanical properties of welded joints were investigated using different mechanical tests including (tensile, bending and microhardness tests). Microstructure characteristic during (FSW) process was studied and different welding joint were investigated using optical microscope. Based on the stir welding experiments conducted in this study the results show that aluminum alloy (2218-T72) can be welded using (FSW) process with maximum welding efficiency (86.95%) and (83.21%) in terms of ultimate tensile strength and bending force respectively using tool pin profile (threaded cylindrical with flat) with rotation diameter (5) mm, rotation speed (900rpm) and (30mm/min) welding speed.
The research endeavors to harness the benefits stemming from the integration of constraint theory into construction project management, with the primary goal of mitigating project completion delays. Additionally, it employs fuzzy analysis to determine the relative significance of fundamental constraints within projects by assigning them appropriate weights. The research problem primarily revolves around two key issues. Firstly, the persistent utilization of outdated methodologies and a heavy reliance on workforce experience without embracing modern computerized technologies. Secondly, the recurring problem of project delivery delays. Construction projects typically encompass five fundamental constraint types: cost restrictions, tim
... Show MoreTransient drop in the heart beat or transient heart block (AVB) may be consider the main cause of syncope or presyncope inpatients with bifascicular block and syncope According to the Guidelines for cardiac pacing pacemaker consider part of treatment. Aims of our study were to evaluate whether there is role for EPS in patients BFB and to evaluate the symptoms after pacing. 42 patients were enrolled in this study, with mean age value (63.4± 12.2years), suffer from interventricular conductive defect and syncope; patients underwent EPS on admission time, and pacemaker implantation accordingly and programmed follow up for the device in the last four years. Our patients were 25 (59.5%) male and 17 (40.5%)female, all of them with syncope o
... Show MoreInvestigations made and soil samples brought from 14 sites in different areas, including Abu Ghraib and Al Anbar. Tests and measurements made in the Microbiology Laboratory at the College of Agriculture, University of Anbar. Department of Soil Sciences and water Resources, in order to isolate bio-fertilizers and test isolates fixing nitrogen in atmosphere and solvents for phosphorous compounds efficiency. The experiment included isolating and diagnosis of bacteria from rhizosphere soils of different plants that were brought from different agricultural areas, 74 isolates obtained by soils alleviation, and then the bio-chemical morphological and microscopic characteristics of these soils studied. The results showed that the most abundant and
... Show MoreIn the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H
... Show MoreBackground: Very low birth weight (VLBW) neonates constitute approximately 4–7 percent of all live births and their mortality is very high.
Objective: to find out if there is a relationship between Very Low Birth Weight Neonates and increased neonatal mortality for age 0 to 7 days.
Methods: A retrospective study of VLBW neonates admitted to NICU at Ibn Al- Baladi Pediatrics and Maternity hospital over one year (2012)were studied, The study period was from April till August 2013. Exclusion criteria were: (1) neonates weighing less than 700 g and with gestational age less than 24 weeks (abortion) (2) death in the delivery room (3) neonates weighing more than 1500 g. (4) Postnatal age more than 7 days. The outcome measure was in-hos
The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur