Lowering the emission, fuel economy and torque management are the essential
requirements in the recent development in the automobile industry. The main engine control
input that satisfies the above requirements is the throttling angle which adjusts the air mass
flow rate to the engine port. Due to the uncertainty and the presence of the nonlinear
components in its dynamical model, the sliding mode control theory is utilized in this work
for the throttle valve angle control system to design a robust controller for this system in the
presence of a nonlinear spring and Coulomb friction. A continuous sliding mode control law
which consists of a saturation function, instead of a signum function, and the integral of
another saturation function is used in this work. This choice for the control structure will
prevent the chattering to occurs but with a certain steady state error. On the other hand, the
addition of the integral term will effectively reduce the steady state error according to the
choice of its parameters. The simulations result for typical references of the opening throttle
angle demonstrate the effectiveness of the proposed controller, especially after the addition of
a nonlinear integral term.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreThis paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show MoreTrajectory tracking and vibration suppression are essential objectives in a flexible joint manipulator control. The flexible joint manipulator is an under-actuated system, in which the number of control actions is less than the degree of freedom to be controlled. It is very challenging to control the underactuated nonlinear system with two degree of freedom. This paper presents a hierarchical sliding mode control (HSMC) for a rotary flexible joint manipulator (RFJM). Firstly, the rotary flexible joint manipulator is modeled by two subsystems. Secondly, the sliding surfaces for both subsystems are constructed. Finally, the control action is designed based on the Lyapunov function. Computer simulation results demonstrate the effectiveness of
... Show MoreIn this work, a step-index fiber with core index and cladding index has been designed. Single-mode operation can be obtained by using a fiber with core diameters 4–13 µm operating at a wavelength of 1.31 µm and by 4–15 µm at 1.55 µm. The fundamental fiber mode properties such as phase constant, effective refractive index, mode radius, effective mode area and the power in the core were calculated. Distributions of the intensity and the amplitude were shown.
Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The
... Show MoreThe control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estim
... Show MoreL1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a large variety of systems. It is commonly used for controlling systems with uncertain time-varying unknown parameters. The effectiveness of L1 adaptive controller for position control of single axis has been examined and compared with Model Reference Adaptive Controller (MRAC). The Linear servo motor is one of the main constituting elements of the x-y table which is mostly used in automation application. It is characterized by time-varying friction and disturbance.
The tracking and steady state performances of both controllers have been assessed fo
... Show MoreThe Internet of Things (IoT) technology and smart systems are playing a major role in the advanced developments in the world that take place nowadays, especially in multiple privilege systems. There are many smart systems used in daily human life to serve them and facilitate their tasks, such as alarm systems that work to prevent unwanted events or face detection and recognition systems. The main idea of this work is to capture live video using a connected Pi camera, save it, and unlock the electric strike door in several ways; either automatically by displaying a live video connected via USB webcam using a deep learning algorithm of facial recognition and OpenCV or by RFID technology, as well as by detecting abnormal entrance wit
... Show More