Preferred Language
Articles
/
joe-2986
EXPERIMENTAL INVESTIGATION OF LAMINAR NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH AND WITHOUT INSIDE PARTITIONS
...Show More Authors

Experimental study has been conducted for laminar natural convection heat transfer of air flow through a rectangular enclosure fitted with vertical partition. The partition was oriented parallel to the two vertical isothermal walls with different temperatures, while all the other surfaces of the enclosure were insulated. In this study a test rig has been designed and constructed to allow studying the effect of Rayleigh number, aperture height ratio, partition thickness, the position of aperture according to the side walls and according to the height, the position of the partition according to the hot wall, and partition inclination. The experiments were carried out with air as the working fluid for Rayleigh number range (5*107 – 1.3*108) and aspect ratio of (0.5). 22 different configurations of partition were used in this study these are:
a) Undivided enclosure (no – partition).
b) (21) Cork partitions of different shapes.
Empirical correlations for average Nusselt number are obtained for the different cases tested. The results show that heat transfer is independent on the partition position according to the cold wall and according to the upper or lower walls, while it shows that heat transfer is sensitive to:
1. Rayleigh number (Ra), which increase with increasing Ra.
2. Aperture height ratio (Ap=hp/H), which is found that when Ap= 5/6 (case 2,3), the reduction in heat transfer is 10.3%, while when Ap=1/2 (case 4,5), the reduction is 17.2% compared with the non partitioned enclosure.
3. Aperture position according to the height, which is found that when the aperture at the centre of the partition (case 13), the reduction in heat transfer is 16.7%, while when the aperture displaced to the upper surface (case 14), the reduction is 19% compared with the non partitioned enclosure.
4. Partition thickness (t), which is found that when t = 10 mm (case 4,5) the reduction in heat transfer is 17.2%, while when t = 150 mm (case 16) the reduction is 20.5% compared with the non partitioned enclosure.
5. Partition inclination (), which is found that the rate of heat transfer reduced with increasingas shown:
a. For = 30 toward the cold wall (case 22), the reduction in heat transfer is 18.2%.
b. For = 45 toward the cold wall (case 18), the reduction in heat transfer was 21.9%.
c. For = 60 toward the cold wall (case 20), the reduction in heat transfer is 30.2%.
d. For = 30 toward the hot wall (case 21), the reduction in heat transfer is 31.3%.
e. For = 45 toward the hot wall (case 17), the reduction in heat transfer is 40.7%.

f. For = 60 toward the hot wall (case 19), the reduction in heat transfer is 42.1%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 01 2016
Journal Name
Research Journal Of Pharmaceutical, Biological And Chemical Sciences
The use of locally prepared Zeolite (Y) for the removal of hydrogen sulfide from Iraqi natural gas
...Show More Authors

This work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z

... Show More
Publication Date
Fri Apr 01 2011
Journal Name
Journal Of Kerbala University
Bond strength of acrylic teeth to heat cure acrylic resin and thermoplastic denture base materials
...Show More Authors

Background: tooth debonding was one of the major reasons for denture repair. With the use of recently introduced thermoplastic denture base materials the problem of tooth debonding increased due to the nature of the bond between these materials and the acrylic teeth. This study was aimed to assess the bond of the acrylic teeth to conventional heat cure acrylic resin and to thermoplastic resin denture base material and methods to enhance it. Materials and methods: acrylic resin teeth were bonded to heat cure acrylic resin with and without wetting the ridge laps of the teeth with monomer and acrylic teeth with prefabricated retentive holes, unmodified and modified, in their ridge laps were processed with Valplast thermoplastic resin denture b

... Show More
Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
An Investigation to the Abrasive Wear in Pipes Used for Oil Industry
...Show More Authors

The work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
CFD Simulation of Air Flow Patterns in a Spray Dryer Fitted With a Rotary Disk
...Show More Authors

The air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and  air velocity at the inlet of  5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 28 2023
Journal Name
Mathematics
The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey
...Show More Authors

A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Theoretical and Experimental Evaluation of Particle size Effect of Iron , Cobalt ,and Nickel Powders Suspended in Al Dura oil on XRF Intensities
...Show More Authors

Iron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .

View Publication Preview PDF
Crossref
Publication Date
Fri Nov 15 2024
Journal Name
Iraqi Journal Of Science
A Comparative Investigation of Different Ionospheric Models to Predict the MUF Parameter During Severe Geomagnetic Storm on 17th March 2015.
...Show More Authors

The present work aimed to make a comparative investigation between three different ionospheric models: IRI-2020, ASAPS and VOACAP. The purpose of the comparative study is to investigate the compatibility of predicting the Maximum Usable Frequency parameter (MUF) over mid-latitude region during the severe geomagnetic storm on 17 March 2015. Three stations distributed in the mid-latitudes were selected for study; these are (Athens (23.50o E, 38.00o N), Jeju (124.53o E, 33.6o N) and Pt. Arguello (239.50o W, 34.80o N). The daily MUF outcomes were calculated using the tested models for the three adopted sites, for a span of five-day (the day of the event and two days preceding and following the event day). The calculated datasets were co

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Feb 27 2018
Journal Name
Iraqi Journal Of Laser
Investigation of Densified SiO2 Sol-Gel Thin Films Using Conventional and DPSS Laser Techniques
...Show More Authors

The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).

View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Investigation of Ground Density Distributions and Charge Form Factors for 14,16,18,20,22N using Cosh Potential
...Show More Authors

     The bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.

View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
An Investigation into Thermal Performance of Mist Water System and The Related Consumption Energy
...Show More Authors

Experimental tests were conducted to investigate the thermal performance (cooling effect) of water mist system consisting of 5μm volume median diameter droplets in reducing the heat gain entering a room through the roof and the west wall by reducing the outside surface temperature due to the evaporative cooling effect during the hot dry summer of Baghdad/Iraq. The test period
was Fifty one days during the months May, June, and July 2012. The single test day consists of 16 test hours starting from 8:00 am to 12:00 pm. The results showed a reduction range of 1.71 to 15.5℃ of the roof outside surface temperature and 21.3 to 76.6% reduction in the daily heat flux entering the room through the roof compared with the case of not using w

... Show More
View Publication Preview PDF
Crossref