In this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic system (FLS) applied in two stages to calculate the
damage extent and location in simply in and out-of- plane curved beam, the damage deduce by reduction
in stiffness for three levels (20%, 40%, 60%). At the first stage the output faults of the fuzzy system represented by four levels of damage in curved beam (undamaged, slight, moderate, and severe), and at second stage indicate damage location at element with two defuzzification methods (centroid and middle of maximum). The results show that the frequency difference method is efficient to indicate and quantify
damage with accuracy about (99.5%) for slight and moderate damage about (100%) for severe damage. Consequently fuzzy logic performs well for detecting, locating and quantifying damage in curved beam.
In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe research aims to design a narrow-band frequency drive amplifier (1.5GHz -1.6GHz), which is used to boost the transmitter amplifier's input signal or amplify the GPS, GlONASS signals at the L1 band.
The Power Amplifier printed circuit board (PCB) prototype was designed using InGaP HBT homogeneous technology transistor and GaAs Heterojunction Bipolar Transistor (HBT) transistor. Two models have been compared; one of the models gave 16dB gain, and the other gave 23dB when using an input power signal (-15dBm). The PCB consumes 2.4W of power and has a physical dimension of 11 x 4 cm.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show More