The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables by iterative technique known as successive
substitution with overrelaxation. The flow and temperature patterns in the channel are obtained for
Reynolds numbers and Grashof number ranging from 25 to 100 and (100 to 1,000,00,) respectively.
A computer program ( Fortran 90 ) is built to calculate the fraction factor and the total
average Nusselt number (Nu) also the average heat transfer Q in steady state and for Aspect ratio Ar
(10) and Grashof number GR (10 2 − 10 5 ), the fluid Prandtl number is fixed at (Pr=0.733) and
Reynolds number Re (25-100).
The results show reasonable representation to the relation between Nusselt number and friction
factor with other parameters (Ar, GR and Re). Nu is increased with increasing Re and GR but it
decreases with Ar increase and (Q) is increased with increasing Re ,GR and Ar. At the same time, the
product friction factor(fRe) increased with (GR) and (Ar)increased and (Re )decrease.
Comparison of the result with the previous work shows a good agreement
Flat-plate collector considers most common types of collectors, for ease of manufacturing and low price compared with other collectors. The main aim of the present work is to increase the efficiency of the collector, which can be achieved by improving the heat transfer and minimize heat loss experimentally. Five types of solar air collectors have been tested, which conventional channel with a smooth absorber plate (model I), dual channel with a smooth absorber plate (model II), dual channel with perforating “V” corrugated absorber plate (model III), dual channel with internal attached wire mesh (model Ⅳ), and dual channel with absorber sheet of transparent honeycomb, (model Ⅴ). The dual channel collector used for
... Show MoreIn this work an experimental simulation is made to predict the performance of steady-state natural heat convection along heated finned vertical base plate to ambient air with different inclination angles and configurations of fin array. Two types of fin arrays namely vertical fins array and V-fins array on heated vertical base plate are used with different heights and spaces. The influence of inclination angle of the plate , configuration of fins array and fin geometrical parameters such as fin height and fin spacing on the temperature distribution, base convection heat transfer coefficient and average Nusselt number have been plotted and discussed. The experimental data are correlated to a formula between average Nusselt number versus R
... Show MoreBackground: The objectives of this study are to evaluate the effect of addition of Multi-Wall Carbon Nano Tubes (MWCNTs) of different concentrations (0.05 mg.mL-1,0.25 mg.mL-1,0.5 mg.mL-1and1 mg.mL-1) on dimethyl sulphoxide DMSO and distilled water (DW) on tooth enamel. It intends to evaluate enamel microhardness in (Kg. m-2) pre and post the application of Multi-Wall Carbon Nano Tubes (MWCNTs). Materials and Methods: Thirty specimens prepared for the present study to measure the hardness of the enamel. Results: The results showed that a significant increase in the enamel microhardness for groups 0.05 mg/mL (group B), 0.25 mg/mL (group C), 0.5 mg/mL (group D) and 1 mg/mL (group E) compared with control group (group A) in dimethyl sulphoxi
... Show MoreThe experimental study showed the use of closed cavity wall (the thickness of the cavity 5cm) made a percentage reduction in the cooling load caused by heat gain from the wall by (21.5 %) compared with the conventional wall. also the thermal resistance of the closed cavity was an average (0.2 m2.oC/W).
The experimental results of the study showed that the use of closed cavity wall reduced the average temperature of the inner surface of the wall during the day, and that the reduction was an average (0.45 oC) when compared with the conventional wall , as well as the use of closed cavity wall reduced the temperature difference range of the inner surface of the wall during the day, and that the
... Show MoreThis study deals with free convection heat transfer for the outer surface of two
cylinders of the shape of (Triangular & Rectangular fined cylinders with 8-fins),
putted into two different spaces; small one with dimension of (Length=1.2m,
height=1m, width=0.9m) and large one with dimension of (Length=3.6m, height =3m,
width=2.7m). The experimental work was conducted with air as a heat transport
medium. These cylinders were fixed at different slope angles (0o, 30o, 60o and 90o)
.The heat fluxes were (279, 1012, 1958, 3005, 4419) W/m2, where heat transferred by
convection and radiation. In large space, the results show that the heat transfer from
the triangular finned cylinder is maximum at a slope angle equals
This research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro
... Show MoreThis search concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of moisture (rate of moisture 50%). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe has a crack already. The test was performed and on two type of specimens, one has a length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to grow (i.e. the number of cycles needed to grow the crack will reduce). In addition, when the test performed on the specimens of length 50cm the number of cycles needed to grow the crack is increased due to the effect of bending stress on the
... Show MoreIn this work, an experimental study has been done to expect the heat characteristics and performance of the forced-convection from a heated horizontal rectangular fins array to air inside a rectangular cross-section duct. Three several configurations of rectangular fins array have been employed. One configuration without notches and perforations (solid) and two configurations with combination of rectangular-notches and circular-perforations for two various area removal percentages from fins namely 18% notches-9% perforations and 9% notches-18% perforations are utilized. The rectangular fins dimensions and fins number are kept constant. The fins array is heated electrically from the base
... Show MoreIn this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number and are discussed under the different values, as shown in the plots.