Experiments were carried out to investigate natural convection heat transfer in an inclined uniformly heated circular cylinder . The effects of surface heat flux and angle of inclination on the temperature and local Nusselt number variations along the cylinder surface are discussed . The investigation covers heat flux range from 92 W/m² to 487 W/m², and angles of inclination 0° ( horizontal) , 30° , 60° and 90° (vertical) . Results show an increase in the natural convection as heat flux increases and as angle of inclination moves from vertical to horizontal position. An empirical equation of average Nusselt number as a function of Rayliegh number was deduced for each angle of inclination .
This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreIn this research the specific activity of natural radionuclides 226Ra, 232Th and 40K were determined by sodium iodide enhanced by thallium NaI(TI) detector and assessed the annual effective dose in Dielac 1 and 2 and Nactalia 1 and 2 for children of less than 1 year which are available in Baghdad markets. The specific activity of 40K has the greater value in all the types which is in the range of allowed levels globally that suggested by UNSCEAR. The mean value of annual effective doses were 2.92, 4.005 and 1.6325 mSv/y for 226Ra, 232Th and 40K respectively.
The rate of electron transfer from N3 sensitized by dye to TiO2 semiconductor in variety solvent have been calculated as a function of reorientation energy effective free energy , volume of semiconductor , attenuation and lattice constant of semiconductor . A very strong dependence of the electron transfer rate constant on the reorientation and effective free energy .Results of calculation indicate that TiO2 is available to use with N3 dye .Our calculation results show that a good agreement with experimental result
The complexes of para-chloranil as electron acceptor and the anions of amide, azide and cyanide as electron donors in aqueous ethanol as a solvent, were studied spectrophotometrically . The reactions lead to the formation of charge transfer complexes. The CT complexes were stable in excess acceptor concentration, while they were underwent another transformations in excess donors concentrations. Stoichiometries were determined, the molecular ratio was determined by continuous variation method (Job method) and is was 1:1 (donor: acceptor). The maximum wavelength (λ max.), the energy (hυCT), ionization potential (Ip) and activation energy (w ) of excited state f
... Show MoreThis study was conducted for evaluating the cytotoxic effect of heat stable enterotoxin a (STa) produced by enterotoxigenic Escherichia coli on the proliferation of primary cancer cell cultures, obtained from tumor samples that were collected from (13) cancer patients and as follows: (five colon cancer patients, two bladder cancer patients, two breast cancer patients, two stomach cancer patients and two lung cancer patients), and on normal cell line (rat embryonic fibroblast / REF) (in vitro) with the use of different concentrations starting from (1) mg/ml and ending with (0.0002) mg/ml by making two fold serial dilutions by using the 96- well microtiter plate, and in comparison with negative (PBS) and positive (MMC, at concentration
... Show MoreIn this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the system is
... Show MoreCharge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of eryth
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.
 
... Show More