Preferred Language
Articles
/
joe-293
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback control system using PID controller to stabilize the fuel cell voltage. Particle swarm optimization technique is used to tune the PID controller gains. The voltage error and hydrogen flow rate are input and the actuator of the PID controller respectively. Simulation results showed that using PID controller with proposed model of fuel cell can successfully improve system performance in tracking output voltage under different operating conditions.

 

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN
...Show More Authors

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (111)
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Evaluation of Transfected HEP-2 Cell Line Using ß-Galactosidase Reporter Assay System
...Show More Authors

Liposome-mediated transfection of cancer cells provide a valuable experimental technique to study cellular gene expression and may also be adapted for gene therapy studies. However, the widely recognized advantage of liposome-mediated transfection is high efficiency. Therefore, this study were performed to optimize transfection techniques in human larynx carcinoma cell line Hep-2 using the commercial synthetic lipid TransFast™ Reagent and monitoring the expression efficiency by using the pSV-?-galactosidase Control Vector which encoded ?-galactosidase, maximum transfection efficiency were achieved with TransFast™ Reagent used at the Charge ratios of 2:1 and 0.5 µg DNA/ml, this is indicate that TransFast™ Reagent can be used as an eff

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Global Pharma Technology,
Doppler study and cell free DNA biomarkers by using PCR in hypertensive and diabetic pregnant iraqi women
...Show More Authors

Scopus
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Analysis of Fuel Burnup and Transmutations at High Burnup of Sodium Fast Breeder Reactor
...Show More Authors

In this paper, the Monte Carlo N-Particle extended  computer code (MCNP) were used to design a model of the European Sodium-cooled Fast Reactor. The multiplication factor, conversion factor, delayed neutrons fraction, doppler constant, control rod worth, sodium void worth, masses for major heavy nuclei, radial and axial power distribution at high burnup are studied. The results show that the reactor breeds fissile isotopes with a conversion ratio of 0.994 at fuel burnup 70 (GWd/T), and minor actinides are buildup inside the reactor core. The study aims to check the efficiency of the model on the calculation of the neutronic parameters of the core at high burnup.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Production and Evaluation of Liquid Hydrocarbon Fuel from Thermal Pyrolysis of Virgin Polyethylene Plastics
...Show More Authors

   Pyrolysis of virgin polyethylene plastics was studied in order to produce hydrocarbon liquid fuel. The pyrolysis process carried out for low and high-density polyethylene plastics in open system batch reactor in temperature range of 370 to 450°C.

   Thermo-gravimetric analysis of the virgin plastics showed that the degradation ranges were between 326 and 495 °C. The results showed that the optimum temperature range of pyrolysis of polyethylene plastics that gives highest liquid yield (with specific gravity between 0.7844 and 0.7865) was 390 to 410 °C with reaction time of about 35 minutes. Fourier Transform Infrared spectroscopy gave a quite evidence that the produced hydrocarbon liquid fuel consisted ma

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Mathematical Modelling of Gene Regulatory Networks
...Show More Authors

    This research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Cluster Analysis by Using Nonparametric Cubic B-Spline Modeling for Longitudinal Data
...Show More Authors

Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroup

... Show More
View Publication Preview PDF
Crossref