Simulation of direct current (DC) discharge plasma using
COMSOL Multiphysics software were used to study the uniformity
of deposition on anode from DC discharge sputtering using ring and
disc cathodes, then applied it experimentally to make comparison
between film thickness distribution with simulation results. Both
simulation and experimental results shows that the deposition using
copper ring cathode is more uniformity than disc cathode
The present work intends to study of dc glow discharge were generated between pin (cathode) and a plate (anode) in Ar gas is performed using COMSOL were used to study electric field distribution along the axis of the discharge and also the distribution of electron density and electron temperature at constant pressure (P=.0.0mbar) and inter electrode distance (d=4 cm) at different applied voltage for both pin cathode system and plate anode and comparison with experimental results.
The paper presents the design of a system consisting of a solar panel with Single Input/Multiple Outputs (DC-DC) Buck Converter by using Simulink dialogue box tools in MATLAB software package for simulation the system. Maximum Power Point Tracking (MPPT) technique depending on Perturb and Observe (P&O) algorithm is used to control the output power of the converter and increase the efficiency of the system. The characteristics of the MSX-60 PV module is chosen in design of the system, whereas the electrical characteristics (P-V, I-V and P-I curves) for the module are achieved, that is affected by the solar radiation and temperature variations. The proposed design module has been found to be stable for any change in atmospheric tempera
... Show MoreAbstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
Carbon Nanopowder was fabricated by arc discharge technique at deposition pressure of 10-5 mbar Argon gas on glass substrates. The prepared carbon nano- powder was collected from chamber and purified with nitric acid at 323K .The morphology and crystalline structure of the prepared powder was examined by X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), and Scanning Electron Microscope (SEM). XRD spectrums showed that the powder exhibits amorphous structure and after purification, the powder showed hexagonal structure with a preferential orientation along(002) direction ,where AFM and SEM gave very compatible estimation on the grain size and shape of the nanopowder.
Electrophoretic Deposition (EPD) process offers various advantages like the fabrication of the ceramic coatings and bodies with dense packing, good sinterability and homogenous microstructure. The variables namely (applied potential, deposition time and sintering temperature) affected the development of hydroxyapatite (HAP) coatings. The coating weight and thickness were found to increase with the increase in applied potential or coating time. Sintering temperature was found to affect in change phases of the metal, furthermore the firing shrinkage of the HAP coating on a constraining metal substrate leads to serve cracking. XRD Characterization indicates the formation of a contamination free phase pure, and the optical micrographs show th
... Show MoreNon-thermal plasmas have become popular as plasma technology has advanced in various fields, including waste management, aerospace technology, and medicinal applications. They can be used to replace combustion fuels in stationary hall motors and need little effort to keep running for longer periods of time. To improve overall system performance, non-reactive gases such as )Xe, Ar, and Kr) are utilized in pure or mixed form to generate plasma. Since DC glow discharge is a fundamental topic of importance, these gases have been researched. The paper concentrates on 2-D modeling and simulation. DC glow-discharge tubes are utilized with argon gas to create plasma and learn about its properties. The magnitude of the electron density, increases wi
... Show MoreIn this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreIn this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec
... Show MoreMicro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.