In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, with a
good degree of accuracy reaching 97.26, 95.92 and 86.43% respectively. These ANN models could be used as a support for workers in operating the filters in water treatment plants and to improve water treatment process. With the use of ANN, water systems will get more efficient, so reducing operation cost and improving the quality of the water produced.
This work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreThis deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe -mixing of - transition in Er 168 populated in Er)n,n(Er 168168 reaction is calculated in the present work by using a2- ratio method. This method has used in previou studies [4, 5, 6, 7] in case that the second transition is pure or for that transition which can be considered as pure only, but in one work we applied this method for two cases, in the first one for pure transition and in the 2nd one for non pure transitions. We take into accunt the experimental a2- coefficient for p revious works and -values for one transition only [1]. The results obtained are, in general, in agood agreement within associated errors, with those reported previously [1], the discrepancies that occur are due to inaccuracies existing
... Show MoreThis research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreTight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThe integration of nanomaterials in asphalt modification has emerged as a promising approach to enhance the performance of asphalt pavements, particularly under high-temperature conditions. Nanomaterials, due to their unique properties such as high surface area, exceptional mechanical strength, and thermal stability, offer significant improvements in the rheological properties, durability, and resistance to deformation of asphalt binders. This research reviewed the application of various nanomaterials, including nano silica, nano alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The incorporation of these nanomaterials into asphalt mixtures has shown potential to increase the stiffness and high-tempera
... Show More