In this study, the kinetics for the reaction of tert-butanol esterification with acetic acid in the presence of Dowex 50Wx8 catalyst was investigated. The reaction kinetic experiments were conducted in 1000 milliliter vessel at temperatures ranged from 50 - 80 oC, catalyst loading 25-50 g/L, and the molar ratios of acetic acid to tert-butanol from 1/3 – 3/1. The reaction rate was found to increase with increasing temperature and catalyst loading. It was also found the conversion of the tert-butanol increases as the molar ratio of acid to alcohol increases from 1/3 – 3/1. The Non-ideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution UNIFAC method. The results show that the activation energy of tert-butanol esterification with acetic acid was found to be 1.09 kJ/mol.
A new, simple, rapid and sensitive spectrophotometric method for the determination of sulfamethoxazole in both pure form and pharmaceutical preparations has been reported.The adapted technique based on utilization 4-aminobenzene sulfonic acid as a new modern chromogenic through an oxidative coupling reaction with sulfamethoxazole and potassium iodate in basic media to form orange soluble dye product with absorption maxima at 490 nm. Subject to Beer's law in the range 2–32μg mL-1. The values of molarabsorption coefficient (ε) and correlation coefficient were found to be 9.118 × 103 and0.9999 respectively whereas the Sandels index was
... Show MoreThe physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
Abstract
A sensitive, precise and reliable indirect spectrophotometric method for the determination of chlordiazepoxide (CDE) in pure and pharmaceutical dosage forms is described. The method is based on oxidative coupling reaction between amino group resulting from acidic decomposition of CDE with phenothiazine in the presence of sodium periodate to produce an intense green soluble dye that is stable and shows a maximum absorption at 602 nm. The calibration plot indicates that Beer’s law is obeyed over the concentration range of 0.1?50 µg/mL, with a molar absorptivity of 1×104 L/mol cm and correlation coefficient of 0.9994.All the conditions that affecting on the stability and sensitivity of the fo
... Show MoreThis research investigates the adsorption isotherm and adsorption kinetics of nitrogen from air using packed bed of Li-LSX zeolite to get medical oxygen. Experiments were carried out to estimate the produced oxygen purity under different operating conditions: input pressure of 0.5 – 2.5 bar, feed flow rate of air of 2 – 10 L.min-1 and packing height of 9-16 cm. The adsorption isotherm was studied at the best conditions of input pressure of 2.5 bar, the height of packing 16 cm, and flow rate 6 Lmin-1 at ambient temperature, at these conditions the highest purity of oxygen by this system 73.15 vol % of outlet gas was produced. Langmuir isotherm was the best models representing the experimental data., and the m
... Show MoreBased on the diazotization reaction of 4-aminoacetophenone with sodium nitrite in acid medium to form diazonium salt, which was coupled with Methyldopa to form a violet reddish soluble azo dye with maximum absorbance at 560 nm,a batch procedure had been developed for the estamination of Methyldopa. Under optimum experimental parameters affecting on the development and stability of the colored product, Beer´s law obeyed in the range (0.5-45) ?g.ml-1 with a correlation coefficient (0.9979).The proposed method was successfully applied to the determination of Methyldopa in either pure form and in commercial brands of pharmaceuticals, no interference was observed from common excipients in the formulations. The analytical results obtained by app
... Show MoreIn this study, light elements Li ,10B for (a,n) and (n,a) reactions
as well as o-particle energy from threshold energy to 10 MeV are
used according to the available data of reaction cross sections. The
more recent cross sections data of (a,n) and (n,a) reactions are
reproduced in fine steps 42 Kev for 10B(n,o) Li in the specified
energy range, as well as cross section (o,n) Values were derived from
the published data of (n,a) as a function of a-energy in the same fine
energy steps by using the principle inverse reactions. This calculation
involves only the ground state of Li OB in the reactions 'Li(a,n) B
B (n,a) Li
Introduction
When two charged nuclei overcome their Coulomb repulsion, a
rearrangement
The kinetics of nickel removal from aqueous solutions using a bio-electrochemical reactor with a packed bed rotating cylinder cathode was investigated. The effects of applied voltage, initial nickel concentration, the rotation speed of the cathode, and pH on the reaction rate constant (k) were studied. The results showed that the cathodic deposition occurred under mass transfer control for all values of the applied voltage used in this research. Accordingly, the relationship between concentration and time can be represented by a first-order equation. The rate constant was found to be dependent on the applied voltage, initial nickel concentration, pH, and rotation speed. It was increased as the applied voltage increased and decreased as t
... Show More The most likely fusion reaction to be practical is Deuterium and Helium-3 (ð·âˆ’ð»ð‘’
3 ), which is highly desirable because both Helium -3 and Deuterium are stable and the reaction produces a 14 ð‘€ð‘’𑉠proton instead of a neutron and the proton can be shielded by magnetic fields. The strongly dependency of the basically hot plasma parameters such as reactivity, reaction rate, and energy for the emitted protons, upon the total cross section, make the problems for choosing the desirable formula for the cross section, the main goal for our present work.