Some structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertical load was 100% and L/D ratio (20) the torsional capacity for pile group increases about 42% if compared with the torsional capacity when the percentage of allowable vertical load was 0% for the same L/D ratio. Also increasing L/D ratio leads to increasing the torsional capacity of pile group, when the percentage of allowable vertical load is 100% and L/D ratio (30), the torsional capacity for pile group increased about 51% if compared with torsional capacity when L/D ratio was (20) for the same groups and the same percentage of allowable vertical load. At failure the twist angle for pile group remain constant 3° when the percentage of allowable load change from 0% to 100 and L/D ratio 20, while it decreases from 2.9° to 2.7° when the percentage of allowable load change from 0% to 100% respectively and L/D ratio 30.
Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynami
The objective of this research is to study experimentally and theoretically the girder vertical load share of the curved I-Girder bridges subjected to the point load in addition to the self-weigh and supper imposed dead loads. The experimental program consist of manufacturing and testing the five simply supported bridge models was scaled down by (1/10) from a prototype of 30m central span. The models carriageway central radii are 30 m, 15m or 10m. The girder spacing of the first two models is 175 mm with an overall carriageway width of 650mm. The girder spacing of the other three bridge models is 200mm with the overall carriageway width of 700 mm. The overall depth of the composite section was 164 mm. To investigate the effect of live load
... Show MoreThe design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreIn this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively.
The present study included the impact of the follow-up variation in the temperature of aqueous medium in the vertical migration behavior of different groups of Zooplankton, consisted species Cyclops vernalis, Daphnia magna, Diaptomus dilopatus, that have been grown in controlled in terms of light and pH laboratory conditions, so choosing temperature of respectively 16,20,24,28, and 32 ËšC. The result showed a clear change in the migration behavior of testing planktonic species, it was a negative relationship between temperatures arises and individual of D. magna in the water column.While being appositive relationship with individual of C. vernalis and the same with D. dilopatus. Also, the result revealed a different impact
... Show MoreThis research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing
... Show MoreIn this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0
Background: Spleen is a hemopoietic organ which is capable of supporting elements of different systems. It is affected by several groups of diseases; inflammatory, hematopoietic, reticuloendothelial proliferation, portal hypertension and storage diseases. Ultrasound (US) may detect mild splenomegaly before it is clinically palpable. Knowledge of the normal range of spleen size in the population being examined is a prerequisite. Racial differences in splenic length could result in incorrect interpretation of splenic measurements and such differences would make it difficult to standardize expected splenic length and to determine non- palpable splenic enlargement.Objectives: To measure the normal values of splenic lengthin Iraqi subjects an
... Show More