Preferred Language
Articles
/
x4a-t4YBIXToZYALmLMn
Girder Load Share for the Curved I-Girder Bridge Subjected to the Point Load

The objective of this research is to study experimentally and theoretically the girder vertical load share of the curved I-Girder bridges subjected to the point load in addition to the self-weigh and supper imposed dead loads. The experimental program consist of manufacturing and testing the five simply supported bridge models was scaled down by (1/10) from a prototype of 30m central span. The models carriageway central radii are 30 m, 15m or 10m. The girder spacing of the first two models is 175 mm with an overall carriageway width of 650mm. The girder spacing of the other three bridge models is 200mm with the overall carriageway width of 700 mm. The overall depth of the composite section was 164 mm. To investigate the effect of live load position on the girder vertical load share a point load was applied at different load levels and was varied across bridge width. Experimental results show that the main factor effect on the girder load share were the point load position, load level and the bridge curvature value, while the girder spacing had a less effect than that. The ANSYS Worckbench 14.5 commercial software was adopted to build up the Finite Element model. Results have shown that the numerical model was slightly stiffer than the experimental test bridge model. A good agreement was obtained between the experimental and analytical results for all models, the maximum deviation in results reach to13% in such a single case, while the convergence results are the prevailing situation.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 02 2018
Journal Name
American Academic Scientific Research Journal For Engineering, Technology, And Sciences
View Publication Preview PDF
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering Science And Technology
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Journal Of Engineering Science And Technology
Scopus (4)
Scopus
Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Load Distribution Factors For Horizontally Curved Composite Concrete-Steel Girder Bridges

This paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 06 2021
Journal Name
Engineering, Technology & Applied Science Research
Evaluation of the Variation in Dynamic Load Factor Throughout a Highly Skewed Steel I-Girder Bridge

The Dynamic Load Factor (DLF) is defined as the ratio between the maximum dynamic and static responses in terms of stress, strain, deflection, reaction, etc. DLF adopted by different design codes is based on parameters such as bridge span length, traffic load models, and bridge natural frequency. During the last decades, a lot of researches have been made to study the DLF of simply supported bridges due to vehicle loading. On the other hand, fewer works have been reported on continuous bridges especially with skew supports. This paper focuses on the investigation of the DLF for a highly skewed steel I-girder bridge, namely the US13 Bridge in Delaware State, USA. Field testing under various load passes of a weighed load vehicle was u

... Show More
Crossref (4)
Crossref
View Publication
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Civil Engineering Research
View Publication Preview PDF
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
The Response of a Highly Skewed Steel I-Girder Bridge with Different Cross-Frame Connections

Braces in straight bridge systems improve the lateral-torsional buckling resistance of the girders by reducing the unbraced length, while in horizontally curved and skew bridges, the braces are primary structural elements for controlling deformations by engaging adjacent girders to act as a system to resist the potentially large forces and torques caused by the curved or skewed geometry of the bridge. The cross-frames are usually designed as torsional braces, which increase the overall strength and stiffness of the individual girders by creating a girder system that translates and rotates as a unit along the bracing lines. However, when they transmit the truck’s live load forces, they can produce fatigue cracks at their connection

... Show More
Crossref (5)
Crossref
View Publication
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Columns Subjected to Axial Load and Cyclic Lateral Load

Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and  deformations, caused by  spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and  . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o

... Show More
Crossref (2)
Crossref
View Publication