The removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant respectively. The sorption process, which is PH dependent, shows maximum removal of metal ions at pH 7. Langmuir and Freundlich isotherm expressions were found to give both a good fit to the experimental data. Kinetic data correlated well with Lagergren second order kinetic model, and flotation step enhanced the removal efficiency of nickel and cadmium from wastewater from about 75% to 94% and reduce turbidity so it can dispense with the filtering process, which is expensive technology. It is believed that flotation separation has great potential as a clean water and wastewater treatment technology.
Baghdad city has been faced numerous issues related to freshwater environment deteriorations due to many reasons, mainly was the discharge of wastewater without adequate treatment. Al- Rustamiya Wastewater Treatment Plant (WWTP) have been constructed among many plants in Baghdad city to reduce the amount of wastewater discharged into natural environment and its subsequent adverse effects. This study was conducted to evaluate the performance of the plant which consist of a conventional activated sludge (CAS) and sequencing batch reactors (SBR) systems as secondary treatment units and its ability to meet Iraqi specifications. A reliability level determination and analysis also were conducted to find the plant's stability and its capabi
... Show MoreIn recent years and decades, there is a great need for developing new alternative energy sources or renewable sustainable energy. On the other hand, new technology approaches are growing . towards benefits from the valuable nutrients in wastewater which are unrecoverable by traditional wastewater treatment processes. In the current study, a novel integrated system of microbial fuel cell and anoxic bioreactor (MFC-ANB) was designed and constructed to investigate its potential for slaughterhouses wastewater treatment, nitrogen recovery, and power generation. The system consisted of a double-chamber tubular type MFC with biocathode inoculated with freshly collected activated sludge. The MFC-ANB system was continuously fed with real-fi
... Show MoreThis study utilized low-cost agricultural waste (molasses production waste powder) to extract copper ions from aqueous solutions. The present investigation explored a range of factors that influence the adsorption process, including temperature, pH, ionic strength, contact time, quantity of adsorbent, and particle size. Spectrophotometric analysis was used to determine the solution's absorbance both before and after the adsorption procedure. The Langmuir and Freundlich adsorption models were used to match the equilibrium data. The Freundlich model was determined to be the best isotherm model using the linear regression coefficient R2=0.9868. Thermodynamic parameters, including enthalpy, entropy, and Gibbs free energy, were calculate
... Show MoreMultiple single-nucleotide polymorphisms (SNPs) located in the intergenic region between estrogen receptor 1 and
To assess the potential association between rs3757318 SNP and breast cancer pathogenicity, specifically in relation to serum vitam
Particulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in
A new Macrocyclic Schiff base ligand Bis[4-hydroxy(1,2-ethylene-dioxidebenzylidene) pheylenediamine] [H2L] and its complexes with (Co(II) , Ni(II) , Cu(II) , Zn(II) and Cd(II)) are reported . The ligand was prepared in two steps,in the first step a solution of (o-phenylene diamine) in methanol react under reflux with (2,4-dihydroxybenzylaldeyed) to give an (intermediatecompound) [Bis-1,2 (2,4-dihydroxybenzylediene)pheylinediamine] which react in the second step with (1,2- dichloro ethane) giving the mentioned ligand.Then the complexes were synthesis of adding of corresponding metal salts to the solution of the ligand in methanol under reflux with 1:1 metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, chloride content a
... Show Morefour coordinated complexes for divalent metal ions : Mn, Fe, Co, Ni, Cu and Cd have been synthesized using bidentate Schiff base ligand type (NN)formed by the condensation of o-phenylenediamine , p- methylbenzadehyde and furfural in methanol. The ligand was reacted with divalent metal chloride forming complexes of the types :[M(L)Cl2] where : MII=Mn, Fe, Ni, Cu, and Cd . These new compounds were characterized by elemental analysis, spectroscopic methods (FT-IR, U.V-Vis, 1HNMR (for ligand only and atomic absorption) , magnetic susceptibility, chloride content along with conductivity measurement. These studies revealed that the geometry for all complexes about central metal ion is tetrahedral.