The present work includes design, construction and operates of a prototype solar absorption refrigeration system, using methanol as a refrigerant to avoid any refrigerant that cause global warming and greenhouse effect. Flat plate collector was used because it’s easy, ninexpensive and efficient. Many test runs (more than 50) were carried out on the system from May to October, 2013; the main results were taken between the period of July 15, 2013 to August 15, 2013 to find the maximum C.O.P, cooling, temperature and pressure of the system. The system demonstrates a maximum generator temperature of 93.5 oC, on July 18, 2013 at 2:30 pm, and the average mean generator temperature Tgavr was 74.7 °C, for this period. The maximum pressure Pg obtained was 2.25 bar on July 19, 2013 at 2:00 pm. The current system shows cooling capacity of 0.15 ton with coefficient of performance of 0.48, and minimum evaporator temperature obtained was 14.2oC. A comparison of the present with previous works, showed that most of the previous work used ammonia as the main refrigerant, and even that used methanol it was as aqua methanol, or to be part of pair refrigerant, while the present work use the methanol as the main and the only refrigerant in the system. The results and the factors that provided by the current work, give a good understanding for using the methanol as a refrigerant with the solar absorption system. And the system can work in continuous operation cycle. This work gave fundamental understanding for designing solar refrigeration system, by using the results of present study to design air-conditioning unit, with one ton capacity, using the solar energy, and the methanol as a refrigerant.
In this paper, the 5 minutes measured wind speed data for year 2012 at 10 meter height for Tweitha have been statically analyzed to assess the time of wind turbine electrical power generation. After collection Tweitha wind data and calculation of mean wind speed the cumulative Weibull diagram and probability density function was ploted, then each of cumulative Weibull distribution, cut-in and furling turbine wind speed could be used as a mathematical input parameters in order to estimate the hours of electrical power generation for wind turbine during one day or one year. In Tweitha site, found that the average wind speed was (v= 1.76 m/s), so five different wind turbines were be selected to calculate hours of electrical generation for A
... Show MoreThe current research included obtaining the best performance specifications for a silicon device with a mono-crystalline type pn junction (pn–Si). A simulation of the device was performed by the use of a computer program in one dimension SCAPS-1D in order to reach the optimum thickness for both p and n layers and to obtain the best efficiency in performance of the pn-Si junction. The optimum device efficiency was eta (η) = 12.4236 % when the ideal thickness for the p and n layers was 5µm and 1.175µm, respectively (p=5 µm and n=1.75µm).
The research included studying the effects of different spectra of solar illumination using simulation of the device; the usual solar spectrum AM1_5 G1 sun. Spectrum
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreLinear and mass attenuation coefficient of reactive powder concrete (RPC) sample ( of compressive strength equal to 70 Mpa) using beta particles and gamma ray with different energies have been calculated as a function of the absorber thickness and energy. The attenuation coefficient were obtained using NaI(Tl) energy selective scintillation counter with 90Sr/90Y beta source having an energy rang from (0.546-2.274) MeV and gamma ray energies (0.569, 0.662, 1.063, 1.17 and 1.33) MeV . The attenuation coefficient usually depends upon the energy of radiations and nature of the material. The result represented in graphical forms. Exponential decay was observed. It is found that the capability of reactive powder concrete to absorber beta particle
... Show MoreGypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show MoreIndirect electrochemical oxidation of phenol and its derivatives was investigated by using MnO2 rotating cylinder electrode. Taguchi experimental design method was employed to find the best conditions for the removal efficiency of phenol and its derivatives generated during the process. Two main parameters were investigated, current density (C.D.) and electrolysis time. The removal efficiency was considered as a response for the phenol and other organics removal. An orthogonal array L16, the signal to noise (S/N) ratio, and the analysis of variance were used to test the effect of designated process factors and their levels on the performance of phenol and other organics removal efficiency. The results showed that th
... Show MoreSurveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion